Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 52(11): 1151-1157, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077913

RESUMO

The genome folds into a hierarchy of three-dimensional structures within the nucleus. At the sub-megabase scale, chromosomes form topologically associating domains (TADs)1-4. However, how TADs fold in single cells is elusive. Here, we reveal TAD features inaccessible to cell population analysis by using super-resolution microscopy. TAD structures and physical insulation associated with their borders are variable between individual cells, yet chromatin intermingling is enriched within TADs compared to adjacent TADs in most cells. The spatial segregation of TADs is further exacerbated during cell differentiation. Favored interactions within TADs are regulated by cohesin and CTCF through distinct mechanisms: cohesin generates chromatin contacts and intermingling while CTCF prevents inter-TAD contacts. Furthermore, TADs are subdivided into discrete nanodomains, which persist in cells depleted of CTCF or cohesin, whereas disruption of nucleosome contacts alters their structural organization. Altogether, these results provide a physical basis for the folding of individual chromosomes at the nanoscale.


Assuntos
Cromatina/química , Células-Tronco Embrionárias/ultraestrutura , Domínios Proteicos , Animais , Diferenciação Celular/genética , Linhagem Celular , Coloração Cromossômica , Drosophila/genética , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Nanoestruturas , Microscopia Nuclear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...