Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 18: 1356052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818030

RESUMO

Introduction: Chronic stroke survivors with severe arm impairment have limited options for effective rehabilitation. High intensity, repetitive task practice (RTP) is known to improve upper limb function among stroke survivors who have some volitional muscle activation. However, clients without volitional movement of their arm are ineligible for RTP-based interventions and require hands-on facilitation from a clinician or robotic therapy to simulate task practice. Such approaches can be expensive, burdensome, and have marginal effects. Alternatively, supervised at-home telerehabilitation using muscle biofeedback may provide a more accessible, affordable, and effective rehabilitation option for stroke survivors with severe arm impairment, and could potentially help people with severe stroke regain enough volitional activation to be eligible for RTP-types of therapies. Feedback of muscle activity via electromyography (EMG) has been previously used with clients who have minimal or no movement to improve functional performance. Specifically, training to reduce unintended co-contractions of the impaired hand using EMG biofeedback may modestly improve motor control in people with limited movement. Importantly, these modest and covert functional changes may influence the perceived impact of stroke-related disability in daily life. In this manuscript, we examine whether physical changes following use of a portable EMG biofeedback system (Tele-REINVENT) for severe upper limb hemiparesis also relate to perceived quality of life improvements. Secondarily, we examined the effects of Tele-REINVENT, which uses EMG to quantify antagonistic muscle activity during movement attempt trials and transform individuated action into computer game control, on several different domains of stroke recovery. Methods: For this pilot study, nine stroke survivors (age = 37-73 years) with chronic impairment (Fugl-Meyer = 14-40/66) completed 30 1-hour sessions of home-based training, consisting of six weeks of gaming that reinforced wrist extensor muscle activity while attenuating coactivation of flexor muscles. To assess motor control and performance, we measured changes in active wrist ranges of motion, the Fugl-Meyer Assessment, and Action Research Arm Test. We also collected an EMG-based test of muscle control to examine more subtle changes. To examine changes in perceived quality of life, we utilized the Stroke Impact Scale along with participant feedback. Results: Results from our pilot data suggest that 30 sessions of remote training can induce modest changes on clinical and functional assessments, showing a statistically significant improvement of active wrist ranges of motion at the group level, changes that could allow some people with severe stroke to be eligible for other therapeutic approaches, such as RTP. Additionally, changes in motor control were correlated with the perceived impact of stroke on participation and impairment after training. We also report changes in corticomuscular coherence, which showed a laterality change from the ipsilesional motor cortex towards the contralesional hemisphere during wrist extension attempts. Finally, all participants showed high adherence to the protocol and reported enjoying using the system. Conclusion: Overall, Tele-REINVENT represents a promising telerehabilitation intervention that might improve sensorimotor outcomes in severe chronic stroke, and that improving sensorimotor abilities even modestly may improve quality of life. We propose that Tele-REINVENT may be used as a precursor to help participants gain enough active movement to participate other occupational therapy interventions, such as RTP. Future work is needed to examine if home-based telerehabilitation to provide feedback of individuated muscle activity could increase meaningful rehabilitation accessibility and outcomes for underserved populations.

2.
Am J Occup Ther ; 78(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38407976

RESUMO

IMPORTANCE: Complex telehealth interventions can facilitate remote occupational therapy services and improve access for people living with chronic neurological conditions. Understanding the factors that influence the uptake of these technologies is important. OBJECTIVE: To explore the fit between electromyography (EMG) biofeedback and telerehabilitation for stroke survivors, optimize EMG biofeedback interventions, and, more broadly, support other efforts to develop complex telerehabilitation interventions. DESIGN: Pre-implementation mixed-methods analysis of usability and acceptability data collected during a pilot and feasibility study. SETTING: Community. PARTICIPANTS: Adult stroke survivors with hemiparesis (N = 11; M age = 54 yr). INTERVENTION: Game-based EMG biofeedback system for arm sensorimotor rehabilitation, delivered via telehealth. OUTCOMES AND MEASURES: Post-Study System Usability Questionnaire, an extended Unified Theory of Acceptance and Use of Technology model questionnaire, and semistructured interview. We coded the interview data using questionnaire constructs. RESULTS: Participants used an EMG biofeedback intervention at home. Quantitative measures show high levels of perceived usability and acceptability, supported by qualitative findings describing specific facilitators and barriers. CONCLUSIONS AND RELEVANCE: Pre-implementation studies can improve the design and relevance of complex telehealth interventions. One major conclusion from this study is the influence of therapy providers on acceptability and usability of complex telehealth interventions. Plain-Language Summary: This study contributes to an emerging body of literature that examines the use of complex telehealth interventions with survivors of neurological injury. The findings highlight the value and support the development and use of complex telehealth interventions, which have the potential to improve remote access to occupational therapy for clients living with chronic neurological conditions. Complex telehealth interventions can open doors for survivors of neurological injury who face barriers to accessing occupational therapy and would benefit from technology-enabled therapy at home.


Assuntos
Terapia Ocupacional , Acidente Vascular Cerebral , Telemedicina , Telerreabilitação , Adulto , Humanos , Pessoa de Meia-Idade , Telemedicina/métodos , Telerreabilitação/métodos , Biorretroalimentação Psicológica
3.
Front Neurogenom ; 3: 1046695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38235476

RESUMO

Stroke is a leading cause of adult disability in the United States. High doses of repeated task-specific practice have shown promising results in restoring upper limb function in chronic stroke. However, it is currently challenging to provide such doses in clinical practice. At-home telerehabilitation supervised by a clinician is a potential solution to provide higher-dose interventions. However, telerehabilitation systems developed for repeated task-specific practice typically require a minimum level of active movement. Therefore, severely impaired people necessitate alternative therapeutic approaches. Measurement and feedback of electrical muscle activity via electromyography (EMG) have been previously implemented in the presence of minimal or no volitional movement to improve motor performance in people with stroke. Specifically, muscle neurofeedback training to reduce unintended co-contractions of the impaired hand may be a targeted intervention to improve motor control in severely impaired populations. Here, we present the preliminary results of a low-cost, portable EMG biofeedback system (Tele-REINVENT) for supervised and unsupervised upper limb telerehabilitation after stroke. We aimed to explore the feasibility of providing higher doses of repeated task-specific practice during at-home training. Therefore, we recruited 5 participants (age = 44-73 years) with chronic, severe impairment due to stroke (Fugl-Meyer = 19-40/66). They completed a 6-week home-based training program that reinforced activity of the wrist extensor muscles while avoiding coactivation of flexor muscles via computer games. We used EMG signals to quantify the contribution of two antagonistic muscles and provide biofeedback of individuated activity, defined as a ratio of extensor and flexor activity during movement attempt. Our data suggest that 30 1-h sessions over 6 weeks of at-home training with our Tele-REINVENT system is feasible and may improve individuated muscle activity as well as scores on standard clinical assessments (e.g., Fugl-Meyer Assessment, Action Research Arm Test, active wrist range of motion) for some individuals. Furthermore, tests of neuromuscular control suggest modest changes in the synchronization of electroencephalography (EEG) and EMG signals within the beta band (12-30 Hz). Finally, all participants showed high adherence to the training protocol and reported enjoying using the system. These preliminary results suggest that using low-cost technology for home-based telerehabilitation after severe chronic stroke is feasible and may be effective in improving motor control via feedback of individuated muscle activity.

4.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807691

RESUMO

Stroke is a leading cause of long-term disability in the United States. Recent studies have shown that high doses of repeated task-specific practice can be effective at improving upper-limb function at the chronic stage. Providing at-home telerehabilitation services with therapist supervision may allow higher dose interventions targeted to this population. Additionally, muscle biofeedback to train patients to avoid unwanted simultaneous activation of antagonist muscles (co-contractions) may be incorporated into telerehabilitation technologies to improve motor control. Here, we present the development and feasibility of a low-cost, portable, telerehabilitation biofeedback system called Tele-REINVENT. We describe our modular electromyography acquisition, processing, and feedback algorithms to train differentiated muscle control during at-home therapist-guided sessions. Additionally, we evaluated the performance of low-cost sensors for our training task with two healthy individuals. Finally, we present the results of a case study with a stroke survivor who used the system for 40 sessions over 10 weeks of training. In line with our previous research, our results suggest that using low-cost sensors provides similar results to those using research-grade sensors for low forces during an isometric task. Our preliminary case study data with one patient with stroke also suggest that our system is feasible, safe, and enjoyable to use during 10 weeks of biofeedback training, and that improvements in differentiated muscle activity during volitional movement attempt may be induced during a 10-week period. Our data provide support for using low-cost technology for individuated muscle training to reduce unintended coactivation during supervised and unsupervised home-based telerehabilitation for clinical populations, and suggest this approach is safe and feasible. Future work with larger study populations may expand on the development of meaningful and personalized chronic stroke rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Telerreabilitação , Computadores , Humanos , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...