Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Hum Mol Genet ; 32(6): 917-933, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36190515

RESUMO

Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here, we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modeling, expression analysis in GCSH knockdown COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency, whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options.


Assuntos
Hiperglicinemia não Cetótica , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Proteínas/genética , Mutação , Éxons/genética , Glicina/genética , Glicina/metabolismo
2.
J Clin Med ; 10(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34768513

RESUMO

Fibromyalgia (FM) has been explained as a result of gene-environment interactions. The present study aims to verify DNA methylation differences in eleven candidate genome regions previously associated to FM, evaluating DNA methylation patterns as potential disease biomarkers. DNA methylation was analyzed through bisulfite sequencing, comparing 42 FM women and their 42 healthy sisters. The associations between the level of methylation in these regions were further explored through a network analysis. Lastly, a logistic regression model investigated the regions potentially associated with FM, when controlling for sociodemographic variables and depressive symptoms. The analysis highlighted significant differences in the GCSAML region methylation between patients and controls. Moreover, seventeen single CpGs, belonging to other genes, were significantly different, however, only one cytosine related to GCSAML survived the correction for multiple comparisons. The network structure of methylation sites was different for each group; GRM2 methylation represented a central node only for FM patients. Logistic regression revealed that depressive symptoms and DNA methylation in the GRM2 region were significantly associated with FM risk. Our study encourages better exploration of GCSAML and GRM2 functions and their possible role in FM affecting immune, inflammatory response, and central sensitization of pain.

3.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830106

RESUMO

Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.


Assuntos
DNA Fúngico , DNA Mitocondrial , Transtornos Heredodegenerativos do Sistema Nervoso , Hepatopatias , Proteínas de Membrana , Mitocôndrias , Doenças Mitocondriais , Proteínas Mitocondriais , Doenças do Sistema Nervoso Periférico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/terapia , Humanos , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/terapia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/terapia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Nucleotídeos/genética , Nucleotídeos/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/terapia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome
4.
Scand J Pain ; 21(2): 372-383, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-34387961

RESUMO

OBJECTIVES: The present pilot study aims to investigate DNA methylation changes of genes related to fibromyalgia (FM) development and its main comorbid symptoms, including sleep impairment, inflammation, depression and other psychiatric disorders. Epigenetic modifications might trigger or perpetuate complex interplay between pain transduction/transmission, central pain processing and experienced stressors in vulnerable individuals. METHODS: We conducted DNA methylation analysis by targeted bisulfite NGS sequencing testing differential methylation in 112 genomic regions from leukocytes of eight women with FM and their eight healthy sisters as controls. RESULTS: Tests for differentially methylated regions and cytosines brought focus on the GRM2 gene, encoding the metabotropic glutamate receptor2. The slightly increased DNA methylation observed in the GRM2 region of FM patients may confirm the involvement of the glutamate pathway in this pathological condition. Logistic regression highlighted the simultaneous association of methylation levels of depression and inflammation-related genes with FM. CONCLUSIONS: Altogether, the results evidence the glutamate pathway involvement in FM and support the idea that a combination of methylated and unmethylated genes could represent a risk factor to FM or its consequence, more than single genes. Further studies on the identified biomarkers could contribute to unravel the causative underlying FM mechanisms, giving reliable directions to research, improving the diagnosis and effective therapies.


Assuntos
Metilação de DNA , Fibromialgia , Receptores de Glutamato Metabotrópico/genética , Depressão/genética , Feminino , Fibromialgia/genética , Humanos , Inflamação/genética , Projetos Piloto
5.
Clin Exp Rheumatol ; 39 Suppl 130(3): 144-152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161225

RESUMO

OBJECTIVES: Evidence from genome-wide and candidate gene association studies, familial aggregation and linkage analyses demonstrate the genetic contribution to fibromyalgia (FM) disease. This study aimed to identify genetic biomarkers of FM and its related comorbid disorders, by exploring 41 polymorphisms potentially involved in FM pathogenesis in families with at least one patient with FM. METHODS: Core symptoms were assessed, and blood samples collected from 556 patients with FM and 395 healthy relatives. For the genetic study, a final sample of 401 FM patients and 232 healthy controls was selected, discarding patients with concomitant pathologies and controls with chronic pain. A family-based approach using DFAM test (Plink) and SNPs (single nucleotide polymorphisms) combination analyses to compare FM patients vs. controls were first applied. Second, the genotypic distribution of subgroups of FM patients, stratified by severe vs. mild symptoms of pain, depression and sleep impairment, was considered. RESULTS: No evidence of associations with FM per se were detected, using either a family-based approach or SNPs combination analyses. However, considering the subgroups of FM patients, the SNP rs6454674 (CNR1, cannabinoid receptor 1 gene) was found as a potential genetic marker of FM correlated with depression (p<.001). CONCLUSIONS: No significant associations using either the family-based analysis or the SNPs combination tests dissociated FM patients and their healthy relatives. FM patients with and without depression showed a significant difference in the genotypic distribution related to the SNP rs6454674 in the cannabinoid receptor 1 gene (CNR1) indicating that FM is not a homogenous disorder.


Assuntos
Fibromialgia , Fibromialgia/diagnóstico , Fibromialgia/genética , Marcadores Genéticos , Genótipo , Humanos , Dor , Polimorfismo de Nucleotídeo Único
6.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923309

RESUMO

Mitochondrial diseases result from inherited or spontaneous mutations in mitochondrial or nuclear DNA, leading to an impairment of the oxidative phosphorylation responsible for the synthesis of ATP. To date, there are no effective pharmacological therapies for these pathologies. We performed a yeast-based screening to search for therapeutic drugs to be used for treating mitochondrial diseases associated with dominant mutations in the nuclear ANT1 gene, which encodes for the mitochondrial ADP/ATP carrier. Dominant ANT1 mutations are involved in several degenerative mitochondrial pathologies characterized by the presence of multiple deletions or depletion of mitochondrial DNA in tissues of affected patients. Thanks to the presence in yeast of the AAC2 gene, orthologue of human ANT1, a yeast mutant strain carrying the M114P substitution equivalent to adPEO-associated L98P mutation was created. Five molecules were identified for their ability to suppress the defective respiratory growth phenotype of the haploid aac2M114P. Furthermore, these molecules rescued the mtDNA mutability in the heteroallelic AAC2/aac2M114P strain, which mimics the human heterozygous condition of adPEO patients. The drugs were effective in reducing mtDNA instability also in the heteroallelic strain carrying the R96H mutation equivalent to the more severe de novo dominant missense mutation R80H, suggesting a general therapeutic effect on diseases associated with dominant ANT1 mutations.


Assuntos
Translocador 1 do Nucleotídeo Adenina/genética , Ensaios de Triagem em Larga Escala/métodos , Translocases Mitocondriais de ADP e ATP/genética , Doenças Mitocondriais/tratamento farmacológico , Mutação , Preparações Farmacêuticas/administração & dosagem , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , DNA Mitocondrial/genética , Genes Dominantes , Humanos , Doenças Mitocondriais/genética , Oftalmoplegia/tratamento farmacológico , Oftalmoplegia/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
7.
Genes (Basel) ; 12(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672627

RESUMO

The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.


Assuntos
Predisposição Genética para Doença , Doenças Mitocondriais/genética , Modelos Biológicos , Mutação , Leveduras/genética , Núcleo Celular/genética , DNA Mitocondrial , Perfilação da Expressão Gênica , Genes Mitocondriais , Variação Genética , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/metabolismo , Fosforilação Oxidativa , Leveduras/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-33166669

RESUMO

Both genetic and early environmental factors contribute to the pathogenesis of Alcohol Use Disorder (AUD). Gender and psychopathology symptoms might further moderate this association, resulting in an impairment of both the dopaminergic and serotoninergic pathways that sustain the binge, withdrawal and craving cycle. In a sample of of adult children of alcoholic parents (ACOAs) (n = 107) we compared those with and without an AUD, on socio-demographic variables, adverse childhood experiences, psychopathology symptoms and two polymorphisms associated with an impaired serotoninergic and dopaminergic neurotransmission (5HTTLPR and Taq1A/DRD2). A logistic regression revealed that an early caring environment might lower the risk of developing an AUD. When controlling for the actual psychopathology symptoms, being male and having the genotype associated with an impaired dopaminergic neurotransmission were still associated with AUD. Results were confirmed by an unsupervised approach that showed how the clusters characterised by being male and having the high risk genotypes were still associated with AUD compared to being female without the unfavourable dopamine genotype.Our results point to the need for implementing prevention strategies aimed at creating a caring environment especially in those families with an alcoholic parent. We further suggest that psycho-education as a symptom recognition and avoiding self-medication could improve the outcome in those subjects at higher risk, especially males.


Assuntos
Alcoolismo/etiologia , Filho de Pais com Deficiência/estatística & dados numéricos , Interação Gene-Ambiente , Adulto , Filhos Adultos/psicologia , Filhos Adultos/estatística & dados numéricos , Alcoolismo/epidemiologia , Alcoolismo/genética , Alelos , Estudos de Casos e Controles , Filho de Pais com Deficiência/psicologia , Análise por Conglomerados , Feminino , Predisposição Genética para Doença/genética , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Receptores de Dopamina D2/genética , Fatores de Risco , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inquéritos e Questionários
9.
J Mol Med (Berl) ; 97(11): 1557-1566, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31529142

RESUMO

The VARS2 gene encodes a mitochondrial valyl-transfer RNA synthetase which is used in mitochondrial translation. To date, several patients with VARS2 pathogenic variants have been described in the literature. These patients have features of lactic acidosis with encephalomyopathy. We present a case of an infant with lactic acidosis, failure to thrive, and severe primary pulmonary hypertension who was found to be a compound heterozygote for two novel VARS2 variants (c.1940C>T, p.(Thr647Met) and c.2318G>A, p.(Arg773Gln)). The patient was treated with vitamin supplements and a carbohydrate-restricted diet. The lactic acidosis and failure to thrive resolved, and he showed good growth and development. Functional studies and molecular analysis employed a yeast model system and the VAS1 gene (yeast homolog of VARS2). VAS1 genes harboring either one of two mutations corresponding to the two novel variants in the VARS2 gene, exhibited partially reduced function in haploid yeast strains. A combination of both VAS1 variant alleles in a diploid yeast cell exhibited a more significant decrease in oxidative metabolism-dependent growth and in the oxygen consumption rate (reminiscent of the patient who carries two mutant VARS2 alleles). Our results demonstrate the pathogenicity of the biallellic novel VARS2 variants. KEY MESSAGES: • A case of an infant who is a compound heterozygote for two novel VARS2 variants. • This infant displayed lactic acidosis, failure to thrive, and pulmonary hypertension. • Treatment of the patient with a carbohydrate-restricted diet resulted in good growth and development. • Studies with the homologous yeast VAS1 gene showed reduced function of corresponding single mutant in haploid yeast strains. • A combination of both VAS1 variant alleles in diploid yeast exhibited a more significant decrease in function, thereby confirming the pathogenicity of the biallellic novel VARS2 variants.


Assuntos
Insuficiência de Crescimento/genética , Insuficiência de Crescimento/metabolismo , Antígenos HLA/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Valina-tRNA Ligase/genética , Alelos , Sequência de Aminoácidos , Heterozigoto , Humanos , Lactente , Masculino , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA
10.
Mol Genet Genomic Med ; 7(6): e654, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920170

RESUMO

BACKGROUND: Mutations in mitochondrial aminoacyl tRNA synthetases form a subgroup of mitochondrial disorders often only perturbing brain function by affecting mitochondrial translation. Here we report two siblings with mitochondrial disease, due to compound heterozygous mutations in the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, presenting with severe neurological symptoms but normal mitochondrial function in skeletal muscle biopsies and cultured skin fibroblasts. METHODS: Whole exome sequencing on genomic DNA samples from both subjects and their parents identified two compound heterozygous variants c.833T>G (p.Val278Gly) and c.938A>T (p.Lys313Met) in the WARS2 gene as potential disease-causing variants. We generated patient-derived neuroepithelial stem cells and modeled the disease in yeast and Drosophila melanogaster to confirm pathogenicity. RESULTS: Biochemical analysis of patient-derived neuroepithelial stem cells revealed a mild combined complex I and IV defect, while modeling the disease in yeast demonstrated that the reported aminoacylation defect severely affects respiration and viability. Furthermore, silencing of wild type WARS2 in Drosophila melanogaster showed that a partial defect in aminoacylation is enough to cause lethality. CONCLUSIONS: Our results establish the identified WARS2 variants as disease-causing and highlight the benefit of including human neuronal models, when investigating mutations specifically affecting the nervous system.


Assuntos
Leucoencefalopatias/genética , Triptofano-tRNA Ligase/genética , Adolescente , Adulto , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacilação , Animais , Criança , Modelos Animais de Doenças , Drosophila melanogaster , Transtornos do Crescimento/genética , Humanos , Leucoencefalopatias/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Mutação , Linhagem , Triptofano-tRNA Ligase/metabolismo , Sequenciamento do Exoma
11.
Subst Use Misuse ; 54(4): 670-680, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30663487

RESUMO

BACKGROUND: Vulnerability to cannabis use (CU) initiation and problematic use have been shown to be affected by both genetic and environmental factors, with still inconclusive and uncertain evidence. OBJECTIVE: Aim of the present study was to investigate the possible interplay between gene polymorphisms and psychosocial conditions in CU susceptibility. METHODS: Ninety-two cannabis users and ninety-three controls have been included in the study. Exclusion criteria were serious mental health disorders and severe somatic disorders, use of other drugs and alcohol abuse; control subjects were not screened to remove Reward Deficiency Syndrome (RDS) behaviors. A candidate gene association study was performed, including variants related to dopaminergic and endocannabinoids pathways. Adverse childhood experiences and quality of parental care have been retrospectively explored utilizing ACES (Adverse Children Experience Scale), CECA-q (Child Experience of Care and Abuse Questionnaire), PBI (Parental Bonding Instrument). RESULTS: Our findings evidenced a significant association between rs1800497 Taq1A of ANKK1 gene and CU. Parental care was found to be protective factor, with emotional and physical neglect specifically influencing CU. Gender also played a role in CU, with males smoking more than females. However, when tested together genotypes and psychosocial variables, the significance of observed genetic differences disappeared. CONCLUSIONS: Our results confirm a significant role of Taq1A polymorphism in CU vulnerability. A primary role of environmental factors in mediating genetic risk has been highlighted: parental care could be considered the main target to design early prevention programs and strategies.


Assuntos
Maus-Tratos Infantis/psicologia , Fumar Maconha/psicologia , Poder Familiar/psicologia , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Feminino , Estudos de Associação Genética , Humanos , Masculino , Fatores de Proteção , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais , Inquéritos e Questionários
12.
Nat Commun ; 9(1): 4065, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283131

RESUMO

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Assuntos
Cardiomiopatias/enzimologia , Cardiomiopatias/genética , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Mutação/genética , Transferases de Grupos Nitrogenados/genética , Subunidades Proteicas/genética , Sequência de Aminoácidos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Recém-Nascido , Lentivirus/metabolismo , Masculino , Modelos Moleculares , Miocárdio/patologia , Miocárdio/ultraestrutura , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Fosforilação Oxidativa , Linhagem , Biossíntese de Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
PLoS One ; 13(10): e0205014, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273399

RESUMO

Mitochondrial DNA depletion syndromes (MDDS) are a genetically and clinically heterogeneous group of human diseases caused by mutations in nuclear genes and characterized by a severe reduction in mitochondrial DNA (mtDNA) copy number leading to impaired energy production in affected tissues and organs. Mutations in the MPV17 gene, whose role is still elusive, were described as cause of the hepatocerebral form of MDDS and Navajo neuro-hepathopathy. The high degree of conservation observed between MPV17 and its yeast homolog SYM1 made the latter a good model for the study of the pathology. Here, we used Saccharomyces cerevisiae to elucidate the molecular consequences of seven MPV17 missense mutations identified in patients and localized in different protein domains. The phenotypic analysis of the appropriate sym1 mutant strains created demonstrated deleterious effect for all mutations regarding OXPHOS metabolism and mtDNA stability. We deepened the pathogenic effect of the mutations by investigating whether they prevented the correct protein localization into the mitochondria or affected the stability of the proteins. All the Sym1 mutant proteins correctly localized into the mitochondria and only one mutation predominantly affects protein stability. All the other mutations compromised the formation of the high molecular weight complex of unknown composition, previously identified both in yeast, cell cultures and mouse tissues, as demonstrated by the consistent fraction of the Sym1 mutant proteins found free or in not fully assembled complex, strengthening its role as protein forming part of a high molecular weight complex.


Assuntos
Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , DNA Mitocondrial/genética , Humanos , Pseudo-Obstrução Intestinal/patologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Encefalomiopatias Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Peso Molecular , Complexos Multiproteicos/metabolismo , Distrofia Muscular Oculofaríngea , Mutação , Oftalmoplegia/congênito , Fosforilação Oxidativa , Fenótipo , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/patogenicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
15.
Transl Psychiatry ; 8(1): 23, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29353877

RESUMO

Genetic and sociodemographic risk factors potentially associated with cannabis use (CU) were investigated in 40 cannabis users and 96 control subjects. DNA methylation analyses were also performed to explore the possibility of epigenetic changes related to CU. We conducted a candidate gene association study that included variants involved in the dopaminergic (ANKK1, NCAM1 genes) and endocannabinoid (CNR1, CNR2 gene) pathways. Sociodemographic data included gender, marital status, level of education, and body mass index. We used MeDIP-qPCR to test whether variations in DNA methylation might be associated with CU. We found a significant association between SNP rs1049353 of CNR1 gene (p = 0.01) and CU. Differences were also observed related to rs2501431 of CNR2 gene (p = 0.058). A higher education level appears to decrease the risk of CU. Interestingly, females were less likely to use cannabis than males. There was a significantly higher level of DNA methylation in cannabis users compared to controls in two of the genes tested: hypermethylation at exon 8 of DRD2 gene (p = 0.034) and at the CpG-rich region in the NCAM1 gene (p = 0.0004). Both genetic variants and educational attainment were also related to CU. The higher rate of DNA methylation, evidenced among cannabis users, may be either a marker of CU or a consequence of long-term exposure to cannabis. The identified genetic variants and the differentially methylated regions may represent biomarkers and/or potential targets for designs of pharmacological therapeutic agents. Our observations also suggest that educational programs may be useful strategies for CU prevention.


Assuntos
Metilação de DNA , Escolaridade , Variação Genética , Abuso de Maconha/genética , Psicoses Induzidas por Substâncias/etiologia , Adolescente , Adulto , Estudos de Casos e Controles , Epigênese Genética , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Psicoses Induzidas por Substâncias/genética , Adulto Jovem
16.
JAMA Neurol ; 74(6): 686-694, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28395030

RESUMO

Importance: YARS2 mutations have been associated with a clinical triad of myopathy, lactic acidosis, and sideroblastic anemia in predominantly Middle Eastern populations. However, the identification of new patients expands the clinical and molecular spectrum of mitochondrial disorders. Objectives: To review the clinical, molecular, and genetic features of YARS2-related mitochondrial disease and to demonstrate a new Scottish founder variant. Design, Setting, and Participants: An observational case series study was conducted at a national diagnostic center for mitochondrial disease in Newcastle upon Tyne, England, and review of cases published in the literature. Six adults in a well-defined mitochondrial disease cohort and 11 additional cases described in the literature were identified with YARS2 variants between January 1, 2000, and January 31, 2015. Main Outcome and Measures: The spectrum of clinical features and disease progression in unreported and reported patients with pathogenic YARS2 variants. Results: Seventeen patients (median [interquartile range] age at onset, 1.5 [9.8] years) with YARS2-related mitochondrial myopathy were identified. Fifteen individuals (88%) exhibited an elevated blood lactate level accompanied by generalized myopathy; only 12 patients (71%) manifested with sideroblastic anemia. Hypertrophic cardiomyopathy (9 [53%]) and respiratory insufficiency (8 [47%]) were also prominent clinical features. Central nervous system involvement was rare. Muscle studies showed global cytochrome-c oxidase deficiency in all patients tested and severe, combined respiratory chain complex activity deficiencies. Microsatellite genotyping demonstrated a common founder effect shared between 3 Scottish patients with a p.Leu392Ser variant. Immunoblotting from fibroblasts and myoblasts of an affected Scottish patient showed normal YARS2 protein levels and mild respiratory chain complex defects. Yeast modeling of novel missense YARS2 variants closely correlated with the severity of clinical phenotypes. Conclusions and Relevance: The p.Leu392Ser variant is likely a newly identified founder YARS2 mutation. Testing for pathogenic YARS2 variants should be considered in patients presenting with mitochondrial myopathy, characterized by exercise intolerance and muscle weakness even in the absence of sideroblastic anemia irrespective of ethnicity. Regular surveillance and early treatment for cardiomyopathy and respiratory muscle weakness is advocated because early treatment may mitigate the significant morbidity and mortality associated with this genetic disorder.


Assuntos
Acidose Láctica/genética , Anemia Sideroblástica/genética , Cardiomiopatias/genética , Miopatias Mitocondriais/genética , Debilidade Muscular/genética , Insuficiência Respiratória/genética , Tirosina-tRNA Ligase/genética , Acidose Láctica/etnologia , Acidose Láctica/etiologia , Adulto , Idoso , Anemia Sideroblástica/etnologia , Anemia Sideroblástica/etiologia , Cardiomiopatias/etnologia , Cardiomiopatias/etiologia , Inglaterra/etnologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miopatias Mitocondriais/complicações , Miopatias Mitocondriais/etnologia , Debilidade Muscular/etnologia , Debilidade Muscular/etiologia , Mutação , Prognóstico , Insuficiência Respiratória/etnologia , Insuficiência Respiratória/etiologia , Escócia/etnologia
17.
Psychiatry Res ; 245: 458-465, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27631565

RESUMO

Studies evidenced the relationship between adverse childhood experiences (ACEs) and tobacco smoking in adulthood. An appropriate parenting style has been found to be associated with children's less frequent tobacco consumption. Hypothalamus-pituitary-adrenal (HPA) axis hyperactivity could represent the potential link between ACEs, mood disorders and smoking susceptibility. We studied a sample of 50 male smokers, affected by nicotine dependence and 50 controls who never smoked. Self-reported retrospective perception of neglect (Child Experience of Care and Abuse: CECA-Q questionnaire), age of smoking onset, number of cigarette/day, psychiatric symptoms (Symptoms Check List 90 scale: SCL 90) and basal level of ACTH and cortisol have been evaluated. Total SCL-90 scores, CECA-Q values and cortisol plasma level were significantly higher among smokers. Cortisol and ACTH values showed a significant direct correlation with CECA-Q and SCL90 total score and an inverse significant correlation with the age of smoking. Cortisol and ACTH did not correlate with the number of cigarette smoked. Once controlled for SCL90 and CECA-Q with multiple regression measures, the association between smoking and hormone levels reversed, suggesting that increased cortisol and ACTH basal levels were attributable to preexisting conditions such as early-life exposure to emotional neglect, psychological problems and a predisposition to addictive behavior.


Assuntos
Hormônio Adrenocorticotrópico/sangue , Adultos Sobreviventes de Eventos Adversos na Infância/psicologia , Hidrocortisona/sangue , Poder Familiar/psicologia , Tabagismo/psicologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Percepção , Fumar/sangue , Fumar/psicologia , Inquéritos e Questionários , Tabagismo/sangue
18.
Eur Addict Res ; 22(3): 163-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26595117

RESUMO

A variety of studies evidenced a relationship between drug use disorders and sexual dysfunction. In particular, heroin and opioid agonist medications to treat heroin dependence have been found to be associated with erectile dysfunction and reduced libido. Controversial findings also indicate the possibility of factors other than the pharmacological effects of opioid drugs concurring to sexual dysfunction. With the present study, we investigated the link between sexual dysfunction and long-term exposure to opioid receptor stimulation (heroin dependence, methadone maintenance treatment, methadone dosage), the potentially related hormonal changes reflecting hypothalamus-pituitary-gonadal axis function and prolactin (PRL) pituitary release, the role of adverse childhood experiences in the clinical history and the concomitant symptoms of comorbid mental health disorders in contributing to sexual problems. Forty male patients participating in a long-term methadone treatment program were included in the present study and compared with 40 healthy control subjects who never used drugs nor abused alcohol. All patients and controls were submitted to the Arizona Sexual Experiences Scale (ASEX), Child Experiences of Care and Abuse-Questionnaire (CECA-Q) and the Symptom Check List-90 Scale. A blood sample for testosterone and PRL assays was collected. Methadone dosages were recorded among heroin-dependent patients on maintenance treatment. Methadone patients scored significantly higher than controls on the 5-item rating ASEX scale, on CECA-Q and on Symptoms Check List 90 (SCL 90) scale. Testosterone plasma levels were significantly lower and PRL levels significantly higher in methadone patients with respect to the healthy control group. ASEX scores reflecting sexual dysfunction were directly and significantly correlated with CECA-Q neglect scores and SCL 90 psychiatric symptoms total score. The linear regression model, when applied only to addicted patients, showed that methadone dosages were not significantly correlated with sexual dysfunction scores except for 'erectile dysfunction', for which an inverse association was evidenced. Testosterone values showed a significant inverse correlation with ASEX sexual dysfunction scores, CECA-Q neglect scores and psychiatric symptom at SCL 90 among methadone patients. PRL levels were directly and significantly correlated with sexual dysfunction scores, psychiatric symptoms at SCL 90 and CECA-Q neglect scores. Both testosterone and PRL did not correlate with methadone dosages. The present findings appear to support the view of childhood adversities and comorbid psychiatric symptoms contributing to sexual dysfunction and related hormonal changes among methadone patients, challenging the assumption that attributes sexual problems entirely to the direct pharmacological effects of opioid agonist medications.


Assuntos
Sobreviventes Adultos de Maus-Tratos Infantis/psicologia , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/epidemiologia , Transtornos Mentais/epidemiologia , Metadona/efeitos adversos , Tratamento de Substituição de Opiáceos/efeitos adversos , Disfunções Sexuais Fisiológicas/induzido quimicamente , Adulto , Estudos de Casos e Controles , Comorbidade , Diagnóstico Duplo (Psiquiatria) , Dependência de Heroína/sangue , Humanos , Itália/epidemiologia , Masculino , Metadona/uso terapêutico , Prolactina/sangue , Disfunções Sexuais Fisiológicas/sangue , Disfunções Sexuais Fisiológicas/psicologia , Testosterona/sangue , Adulto Jovem
19.
Nucleic Acids Res ; 43(17): 8368-80, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26240381

RESUMO

To gain a wider view of the pathways that regulate mitochondrial function, we combined the effect of heat stress on respiratory capacity with the discovery potential of a genome-wide screen in Saccharomyces cerevisiae. We identified 105 new genes whose deletion impairs respiratory growth at 37°C by interfering with processes such as transcriptional regulation, ubiquitination and cytosolic tRNA wobble uridine modification via 5-methoxycarbonylmethyl-2-thiouridine formation. The latter process, specifically required for efficient decoding of AA-ending codons under stress conditions, was covered by multiple genes belonging to the Elongator (e.g. ELP3) and urmylation (e.g., NCS6) pathways. ELP3 or NCS6 deletants had impaired mitochondrial protein synthesis. Their respiratory deficiency was selectively rescued by overexpression of tRNA(Lys) UUU as well by overexpression of genes (BCK1 and HFM1) with a strong bias for the AAA codon read by this tRNA. These data extend the mitochondrial regulome, demonstrate that heat stress can impair respiration by disturbing cytoplasmic translation of proteins critically involved in mitochondrial function and document, for the first time, the involvement in such process of the Elongator and urmylation pathways. Given the conservation of these pathways, the present findings may pave the way to a better understanding of the human mitochondrial regulome in health and disease.


Assuntos
Histona Acetiltransferases/genética , Mitocôndrias/metabolismo , RNA de Transferência de Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Respiração Celular , Códon , Citocromos/química , Citoplasma/metabolismo , Deleção de Genes , Genoma Fúngico , Temperatura Alta , Mitocôndrias/genética , Mutação , Fosforilação Oxidativa , Fenótipo , RNA de Transferência de Lisina/química , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo
20.
Am J Hum Genet ; 97(2): 319-28, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26189817

RESUMO

Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function.


Assuntos
Doenças Mitocondriais/genética , Modelos Moleculares , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , tRNA Metiltransferases/genética , Sequência de Aminoácidos , Pareamento de Bases , Sequência de Bases , Exoma/genética , Mutação da Fase de Leitura/genética , Humanos , Doenças Mitocondriais/patologia , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , tRNA Metiltransferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...