Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Neurobiol ; 31: 93-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37338698

RESUMO

Dystonia is a neurological disease that is currently ranked as the third most common motor disorder. Patients exhibit repetitive and sometimes sustained muscle contractions that cause limb and body twisting and abnormal postures that impair movement. Deep brain stimulation (DBS) of the basal ganglia and thalamus can be used to improve motor function when other treatment options fail. Recently, the cerebellum has garnered interest as a DBS target for treating dystonia and other motor disorders. Here, we describe a procedure for targeting DBS electrodes to the interposed cerebellar nuclei to correct motor dysfunction in a mouse model with dystonia. Targeting cerebellar outflow pathways with neuromodulation opens new possibilities for using the expansive connectivity of the cerebellum to treat motor and non-motor diseases.


Assuntos
Estimulação Encefálica Profunda , Distonia , Camundongos , Animais , Distonia/terapia , Núcleos Cerebelares , Estimulação Encefálica Profunda/métodos , Cerebelo , Gânglios da Base , Modelos Animais de Doenças
2.
Elife ; 102021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542409

RESUMO

Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.


Preterm infants have a higher risk of developing movement difficulties and neurodevelopmental conditions like autism spectrum disorder. This is likely caused by injuries to a part of the brain called the cerebellum. The cerebellum is important for movement, language and social interactions. During the final weeks of pregnancy, the cerebellum grows larger and develops a complex pattern of folds. Tiny granule cells, which are particularly vulnerable to harm, drive this development. Exactly how damage to granule cells causes movement difficulties and other conditions is unclear. One potential explanation may be that granule cells are important for the development of Purkinje cells in the brain. The Purkinje cells send and receive messages and are very important for coordinating movement. To learn more, van der Heijden et al. studied Purkinje cells in mice during a period that corresponds with the third trimester of pregnancy in humans. During this time, the pattern of electrical signals sent by the Purkinje cells changed from slow and irregular to fast and rhythmic with long pauses between bursts. However, mice that had been genetically engineered to lack most of their granule cells showed a completely different pattern of Purkinje cell development. The pattern of electrical signals emitted by these Purkinje cells stayed slow and irregular. Mice that lacked granule cells also had movement difficulties, tremors, and abnormal vocalizations. The experiments confirm that granule cells are essential for normal brain development. Without enough granule cells, the Purkinje cells become stuck in an immature state. This discovery may help physicians identify preterm infants with motor disorders and other conditions earlier. It may also lead to changes in the care of preterm infants designed to protect their granule cells.


Assuntos
Potenciais de Ação , Potenciais Pós-Sinápticos Excitadores , Neurogênese , Células de Purkinje/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Deleção de Genes , Camundongos Knockout , Atividade Motora , Células de Purkinje/metabolismo , Sinapses/metabolismo , Fatores de Tempo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Vocalização Animal
3.
Mol Neurobiol ; 57(5): 2479-2493, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32157575

RESUMO

CRIPT, the cysteine-rich PDZ-binding protein, binds to the third PDZ domain of PSD-95 (postsynaptic density protein 95) family proteins and directly binds microtubules, linking PSD-95 family proteins to the neuronal cytoskeleton. Here, we show that overexpression of a full-length CRIPT leads to a modest decrease, and knockdown of CRIPT leads to an increase in dendritic branching in cultured rat hippocampal neurons. Overexpression of truncated CRIPT lacking the PDZ domain-binding motif, which does not bind to PSD-95, significantly decreases dendritic arborization. Conversely, overexpression of a full-length CRIPT significantly increases the number of immature and mature dendritic spines, and this effect is not observed when CRIPT∆PDZ is overexpressed. Competitive inhibition of CRIPT binding to the third PDZ domain of PSD-95 with PDZ3-binding peptides resulted in differential effects on dendritic arborization based on the origin of respective peptide sequence. These results highlight multifunctional roles of CRIPT during development and underscore the significance of the interaction between CRIPT and the third PDZ domain of PSD-95.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteína 4 Homóloga a Disks-Large/fisiologia , Hipocampo/citologia , Plasticidade Neuronal/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Animais , Ligação Competitiva , Células Cultivadas , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Técnicas de Silenciamento de Genes , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ligação Proteica , Mapeamento de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...