Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 103: 102003, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980443

RESUMO

The contamination of coastal ecosystems from a variety of toxins of marine algal origin is a common and well-documented situation along the coasts of the United States and globally. The occurrence of toxins originating from cyanobacteria along marine coastlines is much less studied, and little information exists on whether toxins from marine and freshwater sources co-occur regularly. The current study focused on the discharge of cyanotoxins from a coastal lagoon (Santa Clara River Estuary) as a consequence of an extreme tide event (King Tides; December 3-5, 2017) resulting in a breach of the berm separating the lagoon from the ocean. Monthly monitoring in the lagoon throughout 2017 documented more than a dozen co-occurring cyanobacterial genera, as well as multiple algal and cyanobacterial toxins. Biotoxin monitoring before and following the King Tide event using Solid Phase Adsorption Toxin Tracking (SPATT) in the lagoon and along the coast revealed the co-occurrence of microcystins, anatoxin, domoic acid, and other toxins on multiple dates and locations. Domoic acid was ubiquitously present in SPATT deployed in the lagoon and along the coast. Microcystins were also commonly detected in both locations, although the beach berm retained the lagoonal water for much of the year. Mussels collected along the coast contained microcystins in approximately half the samples, particularly following the King Tide event. Anatoxin was observed in SPATT only in late December, following the breach of the berm. Our findings indicate both episodic and persistent occurrence of both cyanotoxins and marine toxins may commonly contaminate coastlines in proximity to cyanobacteria-laden creeks and lagoons.


Assuntos
Cianobactérias , Ecossistema , California , Monitoramento Ambiental , Rios
2.
Toxicon ; 192: 1-14, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33428970

RESUMO

The global proliferation of toxin producing cyanobacterial blooms has been attributed to a wide variety of environmental factors with nutrient pollution, increased temperatures, and drought being three of the most significant. The current study is the first formal assessment of cyanotoxins in two impaired lakes, Canyon Lake and Lake Elsinore, in southern California that have a history of cyanobacterial blooms producing high biomass as measured by chl-a. Cyanotoxins in Lake Elsinore were detected at concentrations that persistently exceeded California recreational health thresholds, whereas Canyon Lake experienced persistent concentrations that only occasionally exceeded health thresholds. The study results are the highest recorded concentrations of microcystins, anatoxin-a, and cylindrospermopsin detected in southern California lakes. Concentrations exceeded health thresholds that caused both lakes to be closed for recreational activities. Cyanobacterial identifications indicated a high risk for the presence of potentially toxic genera and agreed with the cyanotoxin results that indicated frequent detection of multiple cyanotoxins simultaneously. A statistically significant correlation was observed between chlorophyll-a (chl-a) and microcystin concentrations for Lake Elsinore but not Canyon Lake, and chl-a was not a good indicator of cylindrospermopsin, anatoxin-a, or nodularin. Therefore, chl-a was not a viable screening indicator of cyanotoxin risk in these lakes. The study results indicate potential acute and chronic risk of exposure to cyanotoxins in these lakes and supports the need for future monitoring efforts to help minimize human and domestic pet exposure and to better understand potential effects to wildlife. The frequent co-occurrence of complex cyanotoxin mixtures further complicates the risk assessment process for these lakes given uncertainty in the toxicology of mixtures.


Assuntos
Cianobactérias , Toxinas Bacterianas/análise , California , Monitoramento Ambiental , Lagos , Microcistinas/análise , Microcistinas/toxicidade
3.
Sci Total Environ ; 719: 137236, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126404

RESUMO

Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.


Assuntos
Purificação da Água , Chicago , Água Potável , Michigan , Praguicidas , Estados Unidos , Poluentes Químicos da Água
4.
Chemosphere ; 230: 567-577, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31125885

RESUMO

Effluent from wastewater treatment plants contains a wide variety of engineered nanoparticles (ENPs) released from different sources. Although single type ENPs have been studied extensively with respect to their environmental impact, ENPs in mixed forms have not been investigated much at environmentally relevant concentrations. This study was designed to test the effect of mixed ENPs at three combinations and concentrations on an aquatic bacterial community. After mixing artificial treated wastewater with river water and exposing the microbial community to ENPs for three days, the ENPs were characterized by SP-ICP-MS. Results from this study showed that: 1) the size distribution of Ti and Zn at the beginning and end of the experiment did not vary much among all tested conditions. For Ag, the most frequent size increased more than 2-fold when the highest Ag ENPs were added; 2) particle concentrations of ENPs generally correlated positively with added concentrations; 3) dissolved Zn and Ag increased significantly as a result of spike; and 4) the bacterial community structure was shifted significantly as a consequence of ENPs' addition. With the dominant population being suppressed, the community exposed to ENPs became more diverse and even. Surprisingly, further increase of the doses of the three ENPs did not bring significant change to the microbial community. These results revealed that ENPs could bring significant impacts to prokaryotes even at low concentrations. But these impacts do not necessarily correlate positively with doses.


Assuntos
Nanopartículas Metálicas/toxicidade , Microbiota/efeitos dos fármacos , Rios/microbiologia , Prata/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Relação Dose-Resposta a Droga , Modelos Teóricos , Águas Residuárias/química
5.
J Environ Sci (China) ; 64: 82-91, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29478664

RESUMO

When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process.


Assuntos
Amônia/análise , Nitrosaminas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Compostos de Alúmen , Amônia/química , Carvão Vegetal/química , Dimetilnitrosamina , Desinfecção , Água Potável , Nitrosaminas/química , Poluentes Químicos da Água/química , Zeolitas/química
6.
Chemosphere ; 195: 531-541, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29277033

RESUMO

In this study, aluminum sulfate, ferric sulfate, ferric chloride, and poly(diallyldimethylammonium chloride) (pDADMAC) coagulation removal of citrate-stabilized silver and gold nanoparticles (NPs) and uncoated titanium dioxide, cerium dioxide, and zinc oxide NPs was investigated using a single particle (SP) ICP-MS direct monitoring technique. Zone 2 (charge neutralization) coagulation was performed in river water and more commonly used Zone 4 (sweep floc) coagulation was performed in both river and lake water with environmentally relevant concentrations of selected NPs added. SP-ICP-MS was used to detect NP and dissolved species, characterize the size distribution, and quantify particle concentration as well as dissolved species before and after treatments. Other parameters including pH, dissolved organic carbon, turbidity, and UV254 absorbance were monitored to characterize treatment efficiency. Charge neutralization (Zone 2) coagulation resulted in 48-85% removal of citrate-stabilized NPs and 90-99% removal of uncoated NPs from river water. Sweep floc (Zone 4) coagulation in river water resulted in 36-94% removal of citrate-stabilized NPs and 91-99% removal of uncoated NPs both with and without polymer addition. Zone 4 coagulation conditions in lake water resulted in 77-98% removal of citrate-stabilized NPs and 59-96% removal of uncoated NPs without polymer. These results indicate that NP removal depends on NP surface and stability, the nature of the source water, and the coagulant type and approach.


Assuntos
Compostos de Alúmen/química , Cloretos/química , Compostos Férricos/química , Água Doce/química , Nanopartículas Metálicas/análise , Cério , Floculação , Ouro , Espectrometria de Massas , Nanopartículas Metálicas/química , Prata , Titânio , Poluentes Químicos da Água/análise , Óxido de Zinco
7.
Nanotoxicology ; 11(9-10): 1140-1156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29125011

RESUMO

To investigate effects of engineered nanoparticles (ENPs) at environmentally relevant concentrations to aquatic microbial communities, TiO2 at 700 µg/L and ZnO at 70 µg/L were spiked to river water samples either separately or combined. Compared to controls where no ENPs were added, the addition of TiO2 ENPs alone at the tested concentration had no statistically significant effect on both the bacterial and eukaryotic communities. The presence of added ENPs: ZnO or ZnO + TiO2 led to significant shift of the microbial community structure and genus distribution. This shift was more obvious for the bacteria than the eukaryotes. Based on results from single particle - inductively coupled plasma - mass spectrometry (SP-ICP-MS), all ENPs aggregated rapidly in water and resulted in much larger particles sizes than the original counterparts. "Dissolved" (including particles smaller than the size detection limits and dissolved ions) concentrations of Ti and Zn increased, too in treatment groups vs. the controls.


Assuntos
Nanopartículas Metálicas/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Rios/química , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Illinois , Nanopartículas Metálicas/química , Consórcios Microbianos/genética , Tamanho da Partícula , Filogenia , RNA Ribossômico 16S/genética , Titânio/química , Poluentes Químicos da Água/química , Óxido de Zinco/química
8.
Anal Bioanal Chem ; 408(24): 6613-22, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27422643

RESUMO

Haloacetic acids (HAAs), which include chloroacetic acids, bromoacetic acids, and emerging iodoacetic acids, are toxic water disinfection byproducts. General screening methodology is lacking for simultaneously monitoring chloro-, bromo-, and iodoacetic acids. In this study, a rapid and sensitive high-performance ion chromatography-tandem mass spectrometry method for simultaneous determination of chloro-, bromo-, and iodo- acetic acids and related halogenated contaminants including bromate, bromide, iodate, and iodide was developed to directly analyze water samples after filtration, eliminating the need for preconcentration, and chemical derivatization. The resulting method was validated in both untreated and treated water matrices including tap water, bottled water, swimming pool water, and both source water and drinking water from a drinking water treatment facility to demonstrate application potential. Satisfactory accuracies and precisions were obtained for all types of tested samples. The detection limits of this newly developed method were lower or comparable with similar techniques without the need for extensive sample treatment requirement and it includes all HAAs and other halogenated compounds. This provides a powerful methodology to water facilities for routine water quality monitoring and related water research, especially for the emerging iodoacetic acids. Graphical abstract High performance ion chromatography-tandem mass spectrometry method for detection of haloacetic acids in water.

9.
Chemosphere ; 153: 521-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27037659

RESUMO

In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere.


Assuntos
Cloraminas/química , Cloro/química , Desinfetantes/química , Água Potável/química , Nitrosaminas/síntese química , Ácido Peracético/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Dimetilnitrosamina/síntese química , Desinfecção , Nitrosaminas/química
10.
Anal Bioanal Chem ; 408(19): 5137-45, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26960902

RESUMO

Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.


Assuntos
Cério/análise , Água Potável/química , Nanopartículas Metálicas/análise , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Óxido de Zinco/análise , Água Potável/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Clin Chim Acta ; 452: 142-8, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26585752

RESUMO

BACKGROUND: Urinary metallomics is presented here as a new "omics" approach that aims to facilitate personalized cancer screening and prevention by improving our understanding of urinary metals in disease. METHODS: Twenty-two urinary metals were examined with inductively-coupled plasma-mass spectrometry in 138 women newly diagnosed with breast cancer and benign conditions. Urinary metals from spot urine samples were adjusted to renal dilution using urine specific gravity. RESULTS: Two urinary metals, copper (P-value=0.036) and lead (P-value=0.003), were significantly increased in the urine of breast cancer patients. A multivariate model that comprised copper, lead, and patient age afforded encouraging discriminatory power (AUC: 0.728, P-value<0.0005), while univariate models of copper (61.7% sensitivity, 50.0% specificity) and lead (76.6% sensitivity, 51.2% specificity) at optimized cutoff thresholds compared favorably with other breast cancer diagnostic modalities such as mammography. Correlations found among various metals suggested potential geographic and dietary influences on the urine metallome that warrant further investigation. CONCLUSIONS: This proof-of-concept work introduces urinary metallomics as a noninvasive, potentially transformative "omics" approach to early cancer detection. Urinary copper and lead have also been preliminarily identified as potential breast cancer biomarkers.


Assuntos
Biomarcadores Tumorais/urina , Neoplasias da Mama/urina , Cobre/urina , Chumbo/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade
12.
Chemosphere ; 144: 148-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26347937

RESUMO

One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water.


Assuntos
Ouro/análise , Nanopartículas Metálicas/análise , Prata/análise , Titânio/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Compostos de Alúmen/química , Compostos de Cálcio/química , Carbono/química , Desinfecção , Água Potável/análise , Filtração , Floculação , Espectrometria de Massas/métodos , Óxidos/química , Rios/química , Abrandamento da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...