Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 594(16): 4549-64, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592729

RESUMO

KEY POINTS: Remarkably little is known about how age affects the sensory signalling pathways in the gastrointestinal tract despite age-related gastrointestinal dysfunction being a prime cause of morbidity amongst the elderly population High-threshold gastrointestinal sensory nerves play a key role in signalling distressing information from the gut to the brain. We found that ageing is associated with attenuated high-threshold afferent mechanosensitivity in the murine colon, and associated loss of TRPV1 channel function. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease. ABSTRACT: Ageing has a profound effect upon gastrointestinal function through mechanisms that are poorly understood. Here we investigated the effect of age upon gastrointestinal sensory signalling pathways in order to address the mechanisms underlying these changes. In vitro mouse colonic and jejunal preparations with attached splanchnic and mesenteric nerves were used to study mechanosensory and chemosensory afferent function in 3-, 12- and 24-month-old C57BL/6 animals. Quantitative RT-PCR was used to investigate mRNA expression in colonic tissue and dorsal root ganglion (DRG) cells isolated from 3- and 24-month animals, and immunohistochemistry was used to quantify the number of 5-HT-expressing enterochromaffin (EC) cells. Colonic and jejunal afferent mechanosensory function was attenuated with age and these effects appeared earlier in the colon compared to the jejunum. Colonic age-related loss of mechanosensory function was more pronounced in high-threshold afferents compared to low-threshold afferents. Chemosensory function was attenuated in the 24-month colon, affecting TRPV1 and serotonergic signalling pathways. High-threshold mechanosensory afferent fibres and small-diameter DRG neurons possessed lower functional TRPV1 receptor responses, which occurred without a change in TRPV1 mRNA expression. Serotonergic signalling was attenuated at 24 months, but TPH1 and TPH2 mRNA expression was elevated in colonic tissue. In conclusion, we saw an age-associated decrease in afferent mechanosensitivity in the mouse colon affecting HT units. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease.


Assuntos
Envelhecimento/fisiologia , Colo/fisiologia , Sensação/fisiologia , Animais , Colo/inervação , Gânglios Espinais/fisiologia , Jejuno/inervação , Jejuno/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/genética , Triptofano Hidroxilase/genética
2.
Exp Physiol ; 99(10): 1299-311, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24951498

RESUMO

Based on the discomfort/pain threshold during rectal distension, irritable bowel syndrome (IBS) patients may be subtyped as normo- or hypersensitive. We previously showed that mucosal biopsy supernatants from IBS patients activated enteric and visceral afferent neurons. We tested the hypothesis that visceral sensitivity is linked to the degree of neuronal activation. Normo- and hypersensitive IBS patients were distinguished by their discomfort/pain threshold to rectal balloon distension with a barostat. Using potentiometric and Ca(2+) dye imaging, we recorded the response of guinea-pig enteric submucous and mouse dorsal root ganglion (DRG) neurons, respectively, to mucosal biopsy supernatants from normosensitive (n = 12 tested in enteric neurons, n = 9 tested in DRG) and hypersensitive IBS patients (n = 9, tested in both types of neurons). In addition, we analysed the association between neuronal activation and individual discomfort/pain pressure thresholds. The IBS supernatants evoked Ca(2+) transients in DRG neurons and spike discharge in submucous neurons. Submucous and DRG neurons showed significantly stronger responses to supernatants from hypersensitive IBS patients as reflected by higher spike frequency or stronger [Ca(2+)]i transients in a larger proportion of neurons. The neuroindex as a product of spike frequency or [Ca(2+)]i transients and proportion of responding neurons correlated significantly with the individual discomfort/pain thresholds of the IBS patients. Supernatants from hypersensitive IBS patients caused stronger activation of enteric and DRG neurons. The level of activation correlated with the individual discomfort/pain threshold pressure values. These findings support our hypothesis that visceral sensitivity is linked to activation of peripheral neurons by biopsy supernatants.


Assuntos
Mucosa Intestinal/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Neurônios/fisiologia , Adulto , Animais , Biópsia , Sinalização do Cálcio/fisiologia , Sistema Nervoso Entérico/fisiopatologia , Feminino , Gânglios Espinais/fisiopatologia , Cobaias , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/patologia , Limiar da Dor , Adulto Jovem
3.
PLoS One ; 7(12): e52104, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272218

RESUMO

BACKGROUND: Compound 48/80 is widely used in animal and tissue models as a "selective" mast cell activator. With this study we demonstrate that compound 48/80 also directly activates enteric neurons and visceral afferents. METHODOLOGY/PRINCIPAL FINDINGS: We used in vivo recordings from extrinsic intestinal afferents together with Ca(++) imaging from primary cultures of DRG and nodose neurons. Enteric neuronal activation was examined by Ca(++) and voltage sensitive dye imaging in isolated gut preparations and primary cultures of enteric neurons. Intraluminal application of compound 48/80 evoked marked afferent firing which desensitized on subsequent administration. In egg albumen-sensitized animals, intraluminal antigen evoked a similar pattern of afferent activation which also desensitized on subsequent exposure to antigen. In cross-desensitization experiments prior administration of compound 48/80 failed to influence the mast cell mediated response. Application of 1 and 10 µg/ml compound 48/80 evoked spike discharge and Ca(++) transients in enteric neurons. The same nerve activating effect was observed in primary cultures of DRG and nodose ganglion cells. Enteric neuron cultures were devoid of mast cells confirmed by negative staining for c-kit or toluidine blue. In addition, in cultured enteric neurons the excitatory action of compound 48/80 was preserved in the presence of histamine H(1) and H(2) antagonists. The mast cell stabilizer cromolyn attenuated compound 48/80 and nicotine evoked Ca(++) transients in mast cell-free enteric neuron cultures. CONCLUSIONS/SIGNIFICANCE: The results showed direct excitatory action of compound 48/80 on enteric neurons and visceral afferents. Therefore, functional changes measured in tissue or animal models may involve a mast cell independent effect of compound 48/80 and cromolyn.


Assuntos
Neurônios/efeitos dos fármacos , p-Metoxi-N-metilfenetilamina/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sistema Nervoso Entérico/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Cobaias , Masculino , Neurônios/metabolismo , Gânglio Nodoso/efeitos dos fármacos , Gânglio Nodoso/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Fibras Aferentes Viscerais/efeitos dos fármacos , p-Metoxi-N-metilfenetilamina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...