Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(8): 12580-12589, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35866839

RESUMO

Interest in van der Waals materials often stems from a desire to miniaturize existing technologies by exploiting their intrinsic layered structures to create near-atomically thin components that do not suffer from surface defects. One appealing property is an easily switchable yet robust magnetic order, which is only sparsely demonstrated in the case of in-plane anisotropy. In this work, we use widefield nitrogen-vacancy (NV) center magnetic imaging to measure the properties of individual flakes of CuCrP2S6, a multiferroic van der Waals magnet known to exhibit weak easy-plane anisotropy in the bulk. We chart the crossover between the in-plane ferromagnetism in thin flakes down to the trilayer and the bulk behavior dominated by a low-field spin-flop transition. Further, by exploiting the directional dependence of NV center magnetometry, we are able to observe an instance of a predominantly out-of-plane ferromagetic phase near zero field, in contrast with our expectation and previous experiments on the bulk material. We attribute this to the presence of surface anisotropies caused by the sample preparation process or exposure to the ambient environment, which is expected to have more general implications for a broader class of weakly anisotropic van der Waals magnets.

3.
Light Sci Appl ; 11(1): 186, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725815

RESUMO

Controlling and manipulating individual quantum systems in solids underpins the growing interest in the development of scalable quantum technologies. Recently, hexagonal boron nitride (hBN) has garnered significant attention in quantum photonic applications due to its ability to host optically stable quantum emitters. However, the large bandgap of hBN and the lack of efficient doping inhibits electrical triggering and limits opportunities to study the electrical control of emitters. Here, we show an approach to electrically modulate quantum emitters in an hBN-graphene van der Waals heterostructure. We show that quantum emitters in hBN can be reversibly activated and modulated by applying a bias across the device. Notably, a significant number of quantum emitters are intrinsically dark and become optically active at non-zero voltages. To explain the results, we provide a heuristic electrostatic model of this unique behavior. Finally, employing these devices we demonstrate a nearly-coherent source with linewidths of ~160 MHz. Our results enhance the potential of hBN for tunable solid-state quantum emitters for the growing field of quantum information science.

4.
Adv Mater ; 32(39): e2003314, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32830379

RESUMO

The recent isolation of 2D van der Waals magnetic materials has uncovered rich physics that often differs from the magnetic behavior of their bulk counterparts. However, the microscopic details of fundamental processes such as the initial magnetization or domain reversal, which govern the magnetic hysteresis, remain largely unknown in the ultrathin limit. Here a widefield nitrogen-vacancy (NV) microscope is employed to directly image these processes in few-layer flakes of the magnetic semiconductor vanadium triiodide (VI3 ). Complete and abrupt switching of most flakes is observed at fields Hc  ≈ 0.5-1 T (at 5 K) independent of thickness. The coercive field decreases as the temperature approaches the Curie temperature (Tc  ≈ 50 K); however, the switching remains abrupt. The initial magnetization process is then imaged, which reveals thickness-dependent domain wall depinning fields well below Hc . These results point to ultrathin VI3 being a nucleation-type hard ferromagnet, where the coercive field is set by the anisotropy-limited domain wall nucleation field. This work illustrates the power of widefield NV microscopy to investigate magnetization processes in van der Waals ferromagnets, which can be used to elucidate the origin of the hard ferromagnetic properties of other materials and explore field- and current-driven domain wall dynamics.

5.
ACS Appl Mater Interfaces ; 12(11): 13421-13427, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32100531

RESUMO

Surface micro- and nano-patterning techniques are often employed to enhance the optical interface to single photoluminescent emitters in diamond, but the utility of such surface structuring in applications requiring ensembles of emitters is still open to investigation. Here, we demonstrate scalable and fault-tolerant fabrication of closely packed arrays of fluorescent diamond nanopillars, each hosting its own dense, uniformly bright ensemble of near-surface nitrogen-vacancy centers. We explore the optimal sizes for these structures and realize enhanced spin and photoluminescence properties resulting in a 4.5 times increase in optically detected magnetic resonance sensitivity when compared to unpatterned surfaces. Utilizing the increased measurement sensitivity, we image the mechanical stress tensor in each diamond pillar across the arrays and show that the fabrication process has a negligible impact on in-built stress compared to the unpatterned surface. Our results represent a valuable pathway toward future multimodal and vector-resolved imaging studies, for instance in biological contexts.

6.
Nano Lett ; 20(3): 1855-1861, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32017577

RESUMO

We realize a cryogenic wide-field nitrogen-vacancy microscope and use it to image Abrikosov vortices and transport currents in a superconducting Nb film. We observe the disappearance of vortices upon increase of laser power and their clustering about hot spots upon decrease, indicating local quenching of superconductivity by the laser. Resistance measurements confirm the presence of large temperature gradients across the film. We then investigate the effect of such gradients on transport currents where the current path is seen to correlate with the temperature profile even in the fully superconducting phase. In addition to highlighting the role of temperature inhomogeneities in superconductivity phenomena, this work establishes that under sufficiently low laser power conditions wide-field nitrogen-vacancy microscopy enables imaging over mesoscopic scales down to 4 K with submicrometer spatial resolution, providing a new platform for spatially resolved investigations of a range of systems from topological insulators to van der Waals ferromagnets.

7.
Sensors (Basel) ; 18(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690603

RESUMO

Magnetic imaging with ensembles of nitrogen-vacancy (NV) centres in diamond is a recently developed technique that allows for quantitative vector field mapping. Here we uncover a source of artefacts in the measured magnetic field in situations where the magnetic sample is placed in close proximity (a few tens of nm) to the NV sensing layer. Using magnetic nanoparticles as a test sample, we find that the measured field deviates significantly from the calculated field, in shape, amplitude and even in sign. By modelling the full measurement process, we show that these discrepancies are caused by the limited measurement range of NV sensors combined with the finite spatial resolution of the optical readout. We numerically investigate the role of the stand-off distance to identify an artefact-free regime, and discuss an application to ultrathin materials. This work provides a guide to predict and mitigate proximity-induced artefacts that can arise in NV-based wide-field magnetic imaging, and also demonstrates that the sensitivity of these artefacts to the sample can make them a useful tool for magnetic characterisation.

8.
Sci Adv ; 3(4): e1602429, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28508040

RESUMO

Since its first discovery in 2004, graphene has been found to host a plethora of unusual electronic transport phenomena, making it a fascinating system for fundamental studies in condensed matter physics as well as offering tremendous opportunities for future electronic and sensing devices. Typically, electronic transport in graphene has been investigated via resistivity measurements; however, these measurements are generally blind to spatial information critical to observing and studying landmark transport phenomena in real space and in realistic imperfect devices. We apply quantum imaging to the problem and demonstrate noninvasive, high-resolution imaging of current flow in monolayer graphene structures. Our method uses an engineered array of near-surface, atomic-sized quantum sensors in diamond to map the vector magnetic field and reconstruct the vector current density over graphene geometries of varying complexity, from monoribbons to junctions, with spatial resolution at the diffraction limit and a projected sensitivity to currents as small as 1 µA. The measured current maps reveal strong spatial variations corresponding to physical defects at the submicrometer scale. The demonstrated method opens up an important new avenue to investigate fundamental electronic and spin transport in graphene structures and devices and, more generally, in emerging two-dimensional materials and thin-film systems.

9.
Nat Commun ; 6: 6563, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25800494

RESUMO

Fast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface. Here we experimentally demonstrate the use of graphene field-effect transistors (GFETs) as probes of the presence of a layer of individual DNA nucleobases adsorbed on the graphene surface. We show that GFETs are able to measure distinct coverage-dependent conductance signatures upon adsorption of the four different DNA nucleobases; a result that can be attributed to the formation of an interface dipole field. Comparison between experimental GFET results and synchrotron-based material analysis allowed prediction of the ultimate device sensitivity, and assessment of the feasibility of single nucleobase sensing with graphene.


Assuntos
Adenina/metabolismo , Citosina/metabolismo , Sondas de DNA , DNA , Grafite/metabolismo , Guanina/metabolismo , Timina/metabolismo , Transistores Eletrônicos , Adsorção , Sequência de Bases , Análise de Sequência de DNA
10.
Nanoscale ; 7(4): 1471-8, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25502349

RESUMO

The electronic structure of physisorbed molecules containing aromatic nitrogen heterocycles (triazine and melamine) on graphene is studied using a combination of electronic transport, X-ray photoemission spectroscopy and density functional theory calculations. The interfacial electronic structure and charge transfer of weakly coupled molecules on graphene is found to be governed by work function differences, molecular dipole moments and polarization effects. We demonstrate that molecular depolarization plays a significant role in these charge transfer mechanisms even at submonolayer coverage, particularly for molecules which possess strong dipoles. Electronic transport measurements show a reduction of graphene conductivity and charge carrier mobility upon the adsorption of the physisorbed molecules. This effect is attributed to the formation of additional electron scattering sites in graphene by the molecules and local molecular electric fields. Our results show that adsorbed molecules containing polar functional groups on graphene exhibit different coverage behaviour to nonpolar molecules. These effects open up a range of new opportunities for recognition of different molecules on graphene-based sensor devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...