Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 17(1): 892, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27821048

RESUMO

BACKGROUND: Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. RESULTS: In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from 'Alamo', a rust-resistant switchgrass cultivar, and 'Dacotah', a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar 'Summer' plants indicated that the expression of some of these RGHs was developmentally regulated. CONCLUSIONS: Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.


Assuntos
Resistência à Doença/genética , Perfilação da Expressão Gênica , Genes de Plantas , Estudos de Associação Genética , Panicum/genética , Alelos , Sequência de Aminoácidos , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Predisposição Genética para Doença , Genoma de Planta , Genômica/métodos , Panicum/classificação , Filogenia , Polimorfismo de Nucleotídeo Único , Matrizes de Pontuação de Posição Específica , Domínios e Motivos de Interação entre Proteínas/genética , Reprodutibilidade dos Testes
2.
BMC Genomics ; 15: 1055, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25467808

RESUMO

BACKGROUND: Neonicotinoid insecticides are widely known for their broad-spectrum control of arthropod pests. Recently, their effects on plant physiological mechanisms have been characterized as producing a stress shield, which is predicted to enhance tolerance to adverse conditions. Here we investigate the molecular underpinnings of the stress shield concept using the neonicotinoid thiamethoxam in two separate experiments that compare gene expression. We hypothesized that the application of a thiamethoxam seed treatment to soybean would alter the expression of genes involved in plant defensive pathways and general stress response in later vegetative growth. First, we used next-generation sequencing to examine the broad scale transcriptional effects of the thiamethoxam seed treatment at three vegetative stages in soybean. Second, we selected ten target genes associated with plant defense pathways in soybean and examined the interactive effects of thiamethoxam seed treatment and drought stress on expression using qRT-PCR. RESULTS: Direct comparison of thiamethoxam-treated and untreated soybeans revealed minor transcriptional differences. However, when examined across vegetative stages, the thiamethoxam seed treatment induced substantial transcriptional changes that were not observed in untreated plants. Genes associated with photosynthesis, carbohydrate and lipid metabolism, development of the cell wall and membrane organization were uniquely upregulated between vegetative stages in thiamethoxam-treated plants. In addition, several genes associated with phytohormone and oxidative stress responses were downregulated between vegetative stages. When we examined the expression of a subset of ten genes associated with plant defense and stress response, the application of thiamethoxam was found to interact with drought stress by enhancing or repressing expression. In drought stressed plants, thiamethoxam induced (upregulated) expression of a thiamine biosynthetic enzyme (THIZ2) and gibberellin regulated protein (GRP), but repressed (downregulated) the expression of an apetala 2 (GmDREB2A;2), lipoxygenase (LIP), and SAM dependent carboxyl methyltransferase (SAM). CONCLUSIONS: We found evidence that a thiamethoxam seed treatment alters the expression soybean genes related to plant defense and stress response both in the presence and absence of drought stress. Consistent with the thiamethoxam stress shield concept, several genes associated with phytohormones showed enhanced expression in drought stressed plants.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Glycine max/genética , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Sementes/efeitos dos fármacos , Sementes/genética , Estresse Fisiológico/genética , Tiazóis/farmacologia , Transcrição Gênica , Biomassa , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Neonicotinoides , Reprodutibilidade dos Testes , Sementes/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Tiametoxam
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA