Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 324: 116292, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183532

RESUMO

Passive samplers (PS) have been proposed as an enhanced water quality monitoring solution in rivers, but their performance against high-frequency data over the longer term has not been widely explored. This study compared the performance of Chemcatcher® passive sampling (PS) devices with high-frequency sampling (HFS: 7-hourly to daily) in two dynamic rivers over 16 months. The evaluation was based on the acid herbicides MCPA (2-methyl-4-chlorophenoxyacetic acid), mecoprop-P, fluroxypyr and triclopyr. The impact of river discharge parameters on Chemcatcher® device performance was also explored. Mixed effects modelling showed that time-weighted mean concentration (TWMC) and flow-weighted mean concentration (FWMC) values obtained by the HFS approach were both significantly higher (p < 0.001) than TWMC values determined from PS regardless of river or pesticide. Modelling also showed that TWMCPS values were more similar to TWMCHFS than FWMCHFS values. However, further testing revealed that MCPA TWMC values from HFS and PS were not significantly different (p > 0.05). There was little indication that river flow parameters altered PS performance-some minor effects were not significant or consistent. Despite this, the PS recovery of very low concentrations indicated that Chemcatcher® devices may be used to evaluate the presence/absence and magnitude of acid herbicides in hydrologically dynamic rivers in synoptic type surveys where space and time coverage is required. However, a period of calibration of the devices in each river would be necessary if they were intended to provide a quantitative review of pesticide concentration as compared with HFS approaches.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Rios
2.
J Environ Manage ; 319: 115598, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809541

RESUMO

The Water Framework Directive (WFD) aims to protect and improve water quality across Europe through an integrative and multi-level water governance approach. The goal is to ensure that water quality in Europe meets good ecological status by 2027. Whilst the WFD has been hailed as a cornerstone for governance innovation in water management, most EU member states (MS) still struggle to achieve good ecological status of their waters. The realignment to a multi-level governance structure under the WFD is discretionary, and has generated diversity in WFD multi-level governance implementation approaches and final governance arrangements across MS. This diversity may contribute to low goal achievement and weak compliance. This paper investigates how visual impressions of legislative structure across nine MS can illustrate and contribute to understanding the differences in multi-level implementation of WFD and associated water protection directives. We explore, in-depth, the drivers of visual differences in Portugal, Germany (Lower Saxony) and France. We hypothesise that many of the challenges of WFD implementation, and resulting governance arrangements can be explained in terms of the legacy effects of previous water governance choices. With this conceptual framework of investigating the history and legacy, we found the three in depth studies have had different starting points, paths, and end points in their water governance, with sticking points influencing the decision-making processes and compliance required by the WFD. Sticking points include the complexity of existing water governance structures, lobbying by different sectors, and the mandatory WFD timeline for implementation. Portugal had to resolve its focus on water infrastructure and engineering to enable a re-focus on water quality. France and Portugal experienced 'top down' governance at different points in time, slowing the shift to a multi-level governance system. Lower Saxony, representing just one of 16 federal state systems in Germany, highlighted the complex historic governance structures which cannot easily be restructured, generating a layering effect where new governance systems are fitted to old governance systems. We conclude that there is a need to implement a hybrid approach to water governance and WFD implementation including decentralisation (discretionary) to ensure collaboration and engagement of stakeholders at the local level. This hybrid governance system should run in parallel with a centralised (mandatory) governance and regulatory system to enable national environmental standards to be set and enforced. Such systems may provide the best of both worlds (bottom-up involvement of stakeholders meeting top-down goal achievements) and is worthy of further research.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Europa (Continente) , Alemanha , Rios , Qualidade da Água
3.
Environ Sci Policy ; 131: 177-187, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35505912

RESUMO

Food systems worldwide are vulnerable to Phosphorus (P) supply disruptions and price fluctuations. Current P use is also highly inefficient, generating large surpluses and pollution. Global food security and aquatic ecosystems are in jeopardy if transformative action is not taken. This paper pivots from earlier (predominantly conceptual) work to develop and analyse a P transdisciplinary scenario process, assessing stakeholders potential for transformative thinking in P use in the food system. Northern Ireland, a highly livestock-intensive system, was used as case study for illustrating such process. The stakeholder engagement takes a normative stance in that it sets the explicit premise that the food system needs to be transformed and asks stakeholders to engage in a dialogue on how that transformation can be achieved. A Substance Flow Analysis of P flows and stocks was employed to construct visions for alternative futures and stimulate stakeholder discussions on system responses. These were analysed for their transformative potential using a triple-loop social learning framework. For the most part, stakeholder responses remained transitional or incremental, rather than being fundamentally transformative. The process did unveil some deeper levers that could be acted upon to move the system further along the spectrum of transformational change (e.g. changes in food markets, creation of new P markets, destocking, new types of land production and radical land use changes), providing clues of what an aspirational system could look like. Replicated and adapted elsewhere, this process can serve as diagnostics of current stakeholders thinking and potential, as well as for the identification of those deeper levers, opening up avenues to work upon for global scale transformation.

4.
J Environ Manage ; 287: 112270, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735675

RESUMO

Over the last decades, nutrients and pesticides have proved to be a major source of the pollution of drinking water resources in Europe. Extensive legislation has been developed by the EU to protect drinking water resources from agricultural pollution, but the achievement of water quality objectives is still an ongoing challenge throughout Europe. The study aims to identify lessons that can be learnt about the coherence and consistency of the application of EU regulations, and their effects at the local level, using qualitative expert data for 13 local to regional governance arrangements in 11 different European countries. The results show that the complexities and inconsistencies of European legislation drawn up to protect drinking water resources from agricultural pollution come forward most explicitly at local level where cross-sectoral measures have to be taken and effects monitored. At this local level, rather than facilitate, they hamper efforts to achieve water quality objectives. The upcoming revision of the Water Framework Directive (WFD) should strengthen the links between the different directives and how they could be applied at local level. In addition, a more facilitated cross-sectoral approach should be adopted to improve stakeholder networks, between institutional levels and hydrological scales, to attain policy objectives at local level.


Assuntos
Água Potável , Agricultura , Europa (Continente) , Qualidade da Água , Recursos Hídricos , Abastecimento de Água
5.
Sci Total Environ ; 755(Pt 1): 142827, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097257

RESUMO

Freshwater occurrences of the selective acid herbicide 2-methyl-4-chloro-phenoxyacetic acid (MCPA) are an ongoing regulatory and financial issue for water utility industries as the number and magnitude of detections increase, particularly in surface water catchments. Assessments for mitigating pesticide pollution in catchments used as drinking water sources require a combination of catchment-based and water treatment solutions, but approaches are limited by a lack of empirical data. In this study, an enhanced spatial (11 locations) and temporal (7-hourly to daily sampling) monitoring approach was employed to address these issues in an exemplar surface water source catchment (384 km2). The spatial sampling revealed that MCPA was widespread, with occurrences above the 0.1 µg L-1 threshold for a single pesticide being highly positively correlated to sub-catchments with higher proportions of 'Improved Grassland' land use (r = 0.84). These data provide a strong foundation for targeting catchment-based mitigation solutions and also add to the debate on the ecosystems services provided by such catchments. Additionally, of the 999 temporal samples taken over 12 months from the catchment outlet, 25% were above the drinking water threshold of 0.1 µg L-1. This prevalence of high concentrations presents costly problems for source water treatment. Using these data, abstraction shutdowns were simulated for five scenarios using hydrometeorological data to explore the potential to avoid intake of high MCPA concentrations. The scenarios stopped abstraction for 4.2-9.3% of the April-October period and reduced intake of water containing over 0.1 µg L-1 of MCPA by 16-31%. This represents an important development for real-time proxy assessments for water abstraction in the absence of more direct pesticide monitoring data.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Água Potável , Herbicidas , Poluentes Químicos da Água , Acetatos , Ecossistema , Monitoramento Ambiental , Herbicidas/análise , Poluentes Químicos da Água/análise , Poluição da Água
6.
Ambio ; 49(5): 1076-1089, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31542888

RESUMO

The chaotic distribution and dispersal of phosphorus (P) used in food systems (defined here as disorderly disruptions to the P cycle) is harming our environment beyond acceptable limits. An analysis of P stores and flows across Europe in 2005 showed that high fertiliser P inputs relative to productive outputs was driving low system P efficiency (38 % overall). Regional P imbalance (P surplus) and system P losses were highly correlated to total system P inputs and animal densities, causing unnecessary P accumulation in soils and rivers. Reducing regional P surpluses to zero increased system P efficiency (+ 16 %) and decreased total P losses by 35 %, but required a reduction in system P inputs of ca. 40 %, largely as fertiliser. We discuss transdisciplinary and transformative solutions that tackle the P chaos by collective stakeholder actions across the entire food value chain. Lowering system P demand and better regional governance of P resources appear necessary for more efficient and sustainable food systems.


Assuntos
Fertilizantes , Fósforo , Agricultura , Animais , Europa (Continente) , Rios , Solo
7.
Sci Total Environ ; 649: 90-98, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172137

RESUMO

Despite greater emphasis on holistic phosphorus (P) management, current nutrient advice delivered at farm-scale still focuses almost exclusively on agricultural production. This limits our ability to address national and international strategies for the delivery of multiple ecosystem services (ES). Currently there is no operational framework in place to manage P fertility for multiple ES delivery and to identify the costs of potentially sacrificing crop yield and/or quality. As soil P fertility plays a central role in ES delivery, we argue that soil test phosphorus (STP) concentration provides a suitable common unit of measure by which delivering multiple ES can be economically valued relative to maximum potential yield, in $ ha-1 yr-1 units. This value can then be traded, or payments made against one another, at spatio-temporal scales relevant for farmer and national policy objectives. Implementation of this framework into current P fertility management strategies would allow for the integration and interaction of different stakeholder interests in ES delivery on-farm and in the wider landscape. Further progress in biophysical modeling of soil P dynamics is needed to inform its adoption across diverse landscapes.


Assuntos
Agricultura/métodos , Ecossistema , Fertilizantes/análise , Fósforo/administração & dosagem , Solo/química , Produção Agrícola/métodos
8.
J Environ Qual ; 46(3): 537-545, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28724086

RESUMO

Long-term phosphorus (P) applications can increase soil P concentrations in excess of agronomic optima, posing a risk to water quality. Once fertilization stops, however, it may take time for soil P concentrations to decline. Whereas P fertilization adds orthophosphate, little is known about changes in other soil P forms during P buildup and drawdown. This study examined changes in P pools (total P, Olsen P, Mehlich P, and water-extractable P) and P forms determined by P-nuclear magnetic resonance spectroscopy (P-NMR) in grazed grassland plots from Northern Ireland. Between 1994 and 1999, all plots received 8.3 kg P ha yr with variable rates of nitrogen (100-500 kg N ha yr). From 2000 to 2005, plots received 0, 20, 40, or 80 kg P ha yr and 250 kg N ha yr; from 2005 to 2010, no P fertilizer was applied to any plots. In 2005, soil P pool concentrations at the highest P fertilization rates were significantly elevated compared with those in 2000 but had decreased to 2000 concentrations by 2010. In soils receiving no P, soil P pool concentrations were significantly lower than those in 1994 only in 2010. There were few changes in P forms determined by P-NMR. Orthophosphate followed the same trend observed for the soil P pools; total organic P, total inositol phosphates, and total orthophosphate monoesters and diesters were highest in 2010 in the soil receiving no P fertilizer for 10 yr. For these soils, fertilizer application and cessation influenced inorganic P more than organic P.


Assuntos
Fertilizantes , Pradaria , Fósforo/química , Nitrogênio , Solo/química
9.
Sci Total Environ ; 589: 25-35, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28259833

RESUMO

Agriculture has been implicated in the loss of pristine conditions and ecology at river sites classified as at 'high ecological status' across Europe. Although the exact causes remain unclear, diffuse phosphorus (P) transfer warrants consideration because of its wider importance for the ecological quality of rivers. This study assessed the risk of P loss at field scale from farms under contrasting soil conditions within three case-study catchments upstream of near-pristine river sites. Data from 39 farms showed P surpluses were common on extensive farm enterprises despite a lower P requirement and level of intensity. At field scale, data from 520 fields showed that Histic topsoils with elevated organic matter contents had low P reserves due to poor sorption capacities, and received applications of P in excess of recommended rates. On this soil type 67% of fields recorded a field P surplus of between 1 and 31kgha-1, accounting for 46% of fields surveyed across 10 farms in a pressured high status catchment. A P risk assessment combined nutrient management, soil biogeochemical and hydrological data at field scale, across 3 catchments and the relative risks of P transfer were highest when fertilizer quantities that exceeded current recommendations on soils with a high risk of mobilization and high risk of transport as indicated by topographic wetness index values. This situation occurred on 21% of fields surveyed in the least intensively managed catchment with no on-farm nutrient management planning and soil testing. In contrast, the two intensively managed catchments presented a risk of P transfer in only 3% and 1% of fields surveyed across 29 farms. Future agri-environmental measures should be administered at field scale, not farm scale, and based on soil analysis that is inclusive of OM values on a field-by-field basis.

10.
Sci Total Environ ; 575: 474-484, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28029454

RESUMO

Rates and quantities of legacy soil phosphorus (P) lost from agricultural soils, and the timescales for positive change to water quality, remain unclear. From 2000 to 2004 five 0.2ha grazed grassland plots located on a drumlin hillslope in Northern Ireland, received chemical fertiliser applications of 0, 10, 20, 40, 80kgPha-1yr-1 resulting in soil Olsen P concentrations of 19, 24, 28, 38 and 67mgPL-1, respectively, after which applications ceased. Soil Olsen P and losses to overland flow and drainage were monitored from 2005 to 2011 on an event and weekly flow proportional basis, respectively. Soluble reactive P and total P time series were synchronised with daily rainfall and modelled soil moisture deficits. From 2005 to 2011 soil Olsen P decline was proportional to soil P status with a 43% reduction in the plot at 67mgPL-1 in 2004 and a corresponding 12% reduction in the plot with lowest soil P. However, there was no significant difference in the flow-weighted mean concentration for overland flow among plots, all of which exceeded 0.035mgL-1 in >98% of events. Strong interannual and event variations in losses were observed with up to 65% of P being lost during a single rainfall event. P concentrations in drainage flow were independent of Olsen P and drain efficiency was potentially the primary control on concentrations, with the highest concentrations recorded in the plot at 38mgL-1 Olsen P in 2004 (up to 2.72mgL-1). Hydrological drivers, particularly antecedent soil moisture, had a strong influence on P loss in both overland and drainage flow, with higher concentrations recorded above a soil moisture deficit threshold of 7mm. This study demonstrates that on some soil types, legacy P poses a significant long term threat to water quality, even at agronomically optimum soil P levels.

11.
Sci Total Environ ; 572: 618-625, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185348

RESUMO

High ecological status at river sites is an indicator of minimal disturbance from anthropogenic activities and the presence of ecologically important species and communities. However, a lack of clarity on what factors cause sites to lose high ecological status is limiting the ability to maintain the quality of these sites. Examination of ecological status records at 508 high status river sites throughout the Republic of Ireland revealed that 337 had fallen below high status at some point between 2001 and 2012 due to changes in invertebrate communities. A geographical information system was used to characterise land use and environmental variables in the catchment, riparian and reach areas upstream of the sites. The relationships between these variables at the three spatial scales and whether or not river sites had maintained high ecological status were then estimated by multiple logistic regression and propensity modelling. The results indicated that grassland at either catchment or riparian scales had a greater negative impact on high ecological status than at the reach scale. This effect appeared to be strongest for upland, steeply sloping rivers that are subject to high rainfall, possibly due to the presence of sensitive biota and/or a greater potential for erosion. These results highlighted the need for better management of grassland upstream of the high status sites, with a focus on river alterations and critical source areas of nutrients, sediments and pesticides that are hydrologically connected to the river. Sustainable management practices and land use planning in those areas will need to be considered carefully if the aim of maintaining high ecological status at river sites is to be achieved.


Assuntos
Monitoramento Ambiental/métodos , Rios , Agricultura , Ecossistema , Meio Ambiente , Florestas , Sistemas de Informação Geográfica , Pradaria , Irlanda , Chuva
12.
Ambio ; 44 Suppl 2: S297-310, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25681986

RESUMO

Experience with implementing agricultural phosphorus (P) strategies highlights successes and uncertainty over outcomes. We examine case studies from the USA, UK, and Sweden under a gradient of voluntary, litigated, and regulatory settings. In the USA, voluntary strategies are complicated by competing objectives between soil conservation and dissolved P mitigation. In litigated watersheds, mandated manure export has not wrought dire consequences on poultry farms, but has adversely affected beef producers who fertilize pastures with manure. In the UK, regulatory and voluntary approaches are improving farmer awareness, but require a comprehensive consideration of P management options to achieve downstream reductions. In Sweden, widespread subsidies sometime hinder serious assessment of program effectiveness. In all cases, absence of local data can undermine recommendations from models and outside experts. Effective action requires iterative application of existing knowledge of P fate and transport, coupled with unabashed description and demonstration of tradeoffs to local stakeholders.


Assuntos
Eutrofização , Fósforo/análise , Agricultura , Monitoramento Ambiental
14.
Sci Total Environ ; 468-469: 345-57, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24041602

RESUMO

Prediction of the impact of suspended sediment on aquatic ecosystems requires adequate knowledge of sediment dynamics in surface waters. Often, studies reporting the response of aquatic biota to suspended sediment are concerned with concentrations, while catchment erosion studies often report sediment delivery as annual loads and yields, making the comparison to documented ecological impacts difficult. Similarly, the European Union Freshwater Fish Directive (FFD) (78/659/EC) stipulates a guideline value of 25 mg l(-1) which should not be exceeded, with the exception of floods and droughts. In this respect, the significance of suspended sediment in two Irish rivers was assessed using turbidity sensors calibrated for suspended sediment. Sediment yields of 0.07 tonnes (t) ha(-1) year(-1) and 0.44 t ha(-1) year(-1) and annual FFD exceedance frequency of 8.3% and 17.8% were estimated for the two catchments. Contrasts in the frequency of exceedance events between both catchments was observed, yet duration was typically short (<5h). Additionally, this study evaluated different sampling resolutions to assess the impact on estimated loads and exceedance frequency. Increasing resolution improved accuracy and reduced uncertainty, with the 24-7 'Plynlimon' sampling method (sampling every 7h) providing the best solution to estimating both loads and exceedance. This study documents some of the first data on sediment dynamics in Ireland and indicates that periods of elevated suspended sediment concentration in the two study catchments may be significant.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Modelos Teóricos , Rios/química , Movimentos da Água , Irlanda , Nefelometria e Turbidimetria , Irlanda do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...