Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 1296993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990137

RESUMO

By 2050, the world's population will have increased by 34%, to more than 9 billion people, needing a 70% increase in food production. Prepare more dishes with fewer ingredients. Therefore, the critical goal of manufacturers is to increase production while being ecologically benign. Supply chain systems that do not enable direct farmer-to-consumer connection and rising input costs influence data collection, security, and sharing. Constraints on data security, manipulation, and single-point failure are unfulfilled due to a lack of centralized IoT agricultural infrastructure. To address these issues, the article proposes a blockchain-based IoT model. This study also shows one-of-a-kind energy savings. The decentralization of data storage improves the supply chain's transparency and quality through blockchain technology, thus farmers can engage more efficiently. Blockchain technology improves supply chain traceability and security. This article provides a transparent, decentralized blockchain tracking solution and proposes an intelligent model protocol for several Internet of Things (IoT) devices that monitor crop development and the agricultural environment. A new approach has resolved the bulk of the supply chain difficulties. Smart contracts were utilized to organize all transactions in decentralized supply networks. The use of blockchain technology improves transaction quality, and customers may verify the legitimacy of an item's authenticity and legality by using the system. A total of 100 IoT nodes were distributed randomly to each 500 m2 cluster farm. The Internet of Things nodes were used to assess soil moisture, temperature, and crop disease. Network stability period and network life of the proposed method show 90.4% accuracy. The food supply chain will be more efficient and trustworthy with an intelligent model. The immutability of ledger technology and smart contract support further increases supply chain security, privacy, transparency, and trust among all stakeholders in the multi-party system. By 2050, the world's population will need a 70% increase in food production. The food supply chain will be more efficient and trustworthy with an intelligent model. This article provides a transparent, decentralized, and intelligent model protocol for several Internet of Things (IoT) devices.


Assuntos
Blockchain , Internet das Coisas , Agricultura , Segurança Computacional , Abastecimento de Alimentos , Humanos
2.
Comput Intell Neurosci ; 2022: 9737511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528349

RESUMO

The brain is the most complex organ in the human body, and it is also the most complex organ in the whole biological system, making it the most complex organ on the planet. According to the findings of current studies, modern study that properly characterises the EEG data signal provides a clear classification accuracy of human activities which is distinct from previous research. Various brain wave patterns related to common activities such as sleeping, reading, and watching a movie may be found in the Electroencephalography (EEG) data that has been collected. As a consequence of these activities, we accumulate numerous sorts of emotion signals in our brains, including the Delta, Theta, and Alpha bands. These bands will provide different types of emotion signals in our brain as a result of these activities. As a consequence of the nonstationary nature of EEG recordings, time-frequency-domain techniques, on the other hand, are more likely to provide good findings. The ability to identify different neural rhythm scales using time-frequency representation has also been shown to be a legitimate EEG marker; this ability has also been demonstrated to be a powerful tool for investigating small-scale neural brain oscillations. This paper presents the first time that a frequency analysis of EEG dynamics has been undertaken. An augmenting decomposition consisting of the "Versatile Inspiring Wavelet Transform" and the "Adaptive Wavelet Transform" is used in conjunction with the EEG rhythms that were gathered to provide adequate temporal and spectral resolutions. Children's wearable sensors are being used to collect data from a number of sources, including the Internet. The signal is conveyed over the Internet of Things (IoT). Specifically, the suggested approach is assessed on two EEG datasets, one of which was obtained in a noisy (i.e., nonshielded) environment and the other was recorded in a shielded environment. The results illustrate the resilience of the proposed training strategy. Therefore, our method contributes to the identification of specific brain activity in children who are taking part in the research as a result of their participation. On the basis of several parameters such as filtering response, accuracy, precision, recall, and F-measure, the MATLAB simulation software was used to evaluate the performance of the proposed system.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Acústica , Algoritmos , Criança , Saúde da Criança , Eletroencefalografia/métodos , Humanos , Vocabulário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA