Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(14): 10025-10034, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34197090

RESUMO

Tracing produced water origins from wells hydraulically fractured with freshwater-based fluids is sometimes predicated on assumptions that (1) each geological formation contains compositionally unique brine and (2) produced water from recently hydraulically fractured wells resembles fresher meteoric water more so than produced water from older wells. These assumptions are not valid in Williston Basin oil wells sampled in this study. Although distinct average 228Ra/226Ra ratios were found in water produced from the Bakken and Three Forks Formations, average δ2H, δ18O, specific gravity, and conductivity were similar but exhibited significant variability across five oil fields within each formation. Furthermore, initial produced water ("flowback") was operationally defined based on the presence of glycol ether compounds and water from wells that had produced <56% of the amount of fluids injected and sampled within 160 days of fracturing. Flowback unexpectedly exhibited higher temperature, specific gravity, conductivity, δ2H, and δ18O, but lower oxidation-reduction potential and δ11B, relative to the wells thought to be producing formation brines (from wells with a produced-to-injected water ratio [PIWR] > 0.84 and sampled more than 316 days after fracturing). As such, establishing an overall geochemical and isotopic signature of produced water compositions based solely on chemical similarity to meteoric water and formation without the consideration of well treatments, well completion depth, or lateral location across the basin could be misleading if these signatures are assumed to be applicable across the entire basin. These findings have implications for using produced water compositions to understand the interbasin fluid flow and trace sources of hydraulic fracturing fluids.


Assuntos
Fraturamento Hidráulico , Poluentes Químicos da Água , Campos de Petróleo e Gás , Águas Residuárias , Água , Poluentes Químicos da Água/análise , Poços de Água
2.
Toxicol Pathol ; 49(4): 938-949, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33287665

RESUMO

In Tg-rasH2 carcinogenicity mouse models, a positive control group is treated with a carcinogen such as urethane or N-nitroso-N-methylurea to test study validity based on the presence of the expected proliferative lesions in the transgenic mice. We hypothesized that artificial intelligence-based deep learning (DL) could provide decision support for the toxicologic pathologist by screening for the proliferative changes, verifying the expected pattern for the positive control groups. Whole slide images (WSIs) of the lungs, thymus, and stomach from positive control groups were used for supervised training of a convolutional neural network (CNN). A single pathologist annotated WSIs of normal and abnormal tissue regions for training the CNN-based supervised classifier using INHAND criteria. The algorithm was evaluated using a subset of tissue regions that were not used for training and then additional tissues were evaluated blindly by 2 independent pathologists. A binary output (proliferative classes present or not) from the pathologists was compared to that of the CNN classifier. The CNN model grouped proliferative lesion positive and negative animals at high concordance with the pathologists. This process simulated a workflow for review of these studies, whereby a DL algorithm could provide decision support for the pathologists in a nonclinical study.


Assuntos
Aprendizado Profundo , Uretana , Algoritmos , Animais , Inteligência Artificial , Carcinógenos/toxicidade , Compostos de Metilureia , Camundongos , Camundongos Transgênicos , Uretana/toxicidade
3.
Environ Sci Technol ; 54(21): 13917-13925, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33052649

RESUMO

The Utica and Marcellus Shale Plays in the Appalachian Basin are the fourth and first largest natural gas producing plays in the United States, respectively. Hydrocarbon production generates large volumes of brine ("produced water") that must be disposed of, treated, or reused. Though Marcellus brines have been studied extensively, there are few studies from the Utica Shale Play. This study presents new brine chemical analyses from 16 Utica Shale Play wells in Ohio and Pennsylvania. Results from Na-Cl-Br systematics and stable and radiogenic isotopes suggest that the Utica Shale Play brines are likely residual pore water concentrated beyond halite saturation during the formation of the Ordovician Beekmantown evaporative sequence. The narrow range of chemistry for the Utica Shale Play produced waters (e.g., total dissolved solids = 214-283 g/L) over both time and space implies a consistent composition for disposal and reuse planning. The amount of salt produced annually from the Utica Shale Play is equivalent to 3.4% of the annual U.S. halite production. Utica Shale Play brines have radium activities 580 times the EPA maximum contaminant level and are supersaturated with respect to barite, indicating the potential for surface and aqueous radium hazards if not properly disposed of.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Região dos Apalaches , Gás Natural , Ohio , Campos de Petróleo e Gás , Pennsylvania , Sais , Estados Unidos , Poluentes Químicos da Água/análise
4.
Heliyon ; 6(3): e03590, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195404

RESUMO

The organic composition of produced waters (flowback and formation waters) from the middle member of the Bakken Formation and the Three Forks Formation in the Williston Basin, North Dakota were examined to aid in the remediation of surface contamination and help develop treatment methods for produced-water recycling. Twelve produced water samples were collected from the Bakken and Three Forks Formations and analyzed for non-purgeable dissolved organic carbon (NPDOC), acetate, and extractable hydrocarbons. NPDOC and acetate concentrations from sampled wells from ranged from 33-190 mg per liter (mg/L) and 16-40 mg/L, respectively. Concentrations of individual extractable hydrocarbon compounds ranged from less than 1 to greater than 400 µg per liter (µg/L), and included polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, glycol ethers, and cyclic ketones. While the limited number of samples, varying well production age, and lack of knowledge of on-going well treatments complicate conclusions, this report adds to the limited knowledge of organics in produced waters from the Bakken and Three Forks Formations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA