Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(22): 16567-16581, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33136386

RESUMO

Cu(I) active sites in metalloproteins are involved in O2 activation, but their O2 reactivity is difficult to study due to the Cu(I) d10 closed shell which precludes the use of conventional spectroscopic methods. Kß X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kß XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kß XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kß2,5 emission feature reflects the ionization energy of ligand np valence orbitals, the high-energy Kß2,5 emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing. A Kß XES spectrum of the Cu(I) site in preprocessed galactose oxidase (GOpre) supports the 1Tyr/2His structural model that was determined by our previous X-ray absorption spectroscopy and DFT study. The high-energy Kß2,5 emission feature in the Cu(I)-GOpre data has information about the MO containing mostly Cu 3dx2-y2 character that is the frontier molecular orbital (FMO) for O2 activation, which shows the potential of Kß XES in probing the Cu(I) FMO associated with small-molecule activation in metalloproteins.


Assuntos
Cobre/metabolismo , Galactose Oxidase/metabolismo , Cobre/química , Teoria da Densidade Funcional , Galactose Oxidase/química , Oxigênio/química , Oxigênio/metabolismo , Espectrometria por Raios X
2.
J Am Chem Soc ; 141(22): 8877-8890, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060358

RESUMO

Copper-dependent amine oxidases produce their redox active cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), via the CuII-catalyzed oxygenation of an active site tyrosine. This study addresses possible mechanisms for this biogenesis process by presenting the geometric and electronic structure characterization of the CuII-bound, prebiogenesis (preprocessed) active site of the enzyme Arthrobacter globiformis amine oxidase (AGAO). CuII-loading into the preprocessed AGAO active site is slow ( kobs = 0.13 h-1), and is preceded by CuII binding in a separate kinetically favored site that is distinct from the active site. Preprocessed active site CuII is in a thermal equilibrium between two species, an entropically favored form with tyrosine protonated and unbound from the CuII site, and an enthalpically favored form with tyrosine bound deprotonated to the CuII active site. It is shown that the CuII-tyrosinate bound form is directly active in biogenesis. The electronic structure determined for the reactive form of the preprocessed CuII active site is inconsistent with a biogenesis pathway that proceeds through a CuI-tyrosyl radical intermediate, but consistent with a pathway that overcomes the spin forbidden reaction of 3O2 with the bound singlet substrate via a three-electron concerted charge-transfer mechanism.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Cobre/química , Di-Hidroxifenilalanina/análogos & derivados , Sítios de Ligação , Domínio Catalítico , Di-Hidroxifenilalanina/biossíntese , Modelos Moleculares
3.
J Am Chem Soc ; 138(40): 13219-13229, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626829

RESUMO

Galactose oxidase (GO) is a copper-dependent enzyme that accomplishes 2e- substrate oxidation by pairing a single copper with an unusual cysteinylated tyrosine (Cys-Tyr) redox cofactor. Previous studies have demonstrated that the post-translational biogenesis of Cys-Tyr is copper- and O2-dependent, resulting in a self-processing enzyme system. To investigate the mechanism of cofactor biogenesis in GO, the active-site structure of Cu(I)-loaded GO was determined using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy, and density-functional theory (DFT) calculations were performed on this model. Our results show that the active-site tyrosine lowers the Cu potential to enable the thermodynamically unfavorable 1e- reduction of O2, and the resulting Cu(II)-O2•- is activated toward H atom abstraction from cysteine. The final step of biogenesis is a concerted reaction involving coordinated Tyr ring deprotonation where Cu(II) coordination enables formation of the Cys-Tyr cross-link. These spectroscopic and computational results highlight the role of the Cu(I) in enabling O2 activation by 1e- and the role of the resulting Cu(II) in enabling substrate activation for biogenesis.


Assuntos
Domínio Catalítico , Coenzimas/biossíntese , Cobre/metabolismo , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Oxigênio/metabolismo , Transporte de Elétrons , Ligantes , Modelos Moleculares , Teoria Quântica
4.
Acc Chem Res ; 48(5): 1218-26, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25897668

RESUMO

Copper-containing amine oxidases (CuAOs) use both copper and 2,4,5-trihydroxyphenylalanine quinone (TPQ) to catalyze the oxidative deamination of primary amines. The CuAO active site is highly conserved and comprised of TPQ and a mononuclear type II copper center that exhibits five-coordinate, distorted square pyramidal coordination geometry with histidine ligands and equatorially and axially bound water in the oxidized, resting state. The active site is buried within the protein, and CuAOs from various sources display remarkable diversity with respect to the composition of the active site channel and cofactor accessibility. Structural and mechanistic factors that influence substrate preference and inhibitor sensitivity and selectivity have been defined. This Account summarizes the strategies used to design selective CuAO inhibitors based on active site channel characteristics, leading to either enhanced steric fits or the trapping of reactive electrophilic products. These findings provide a framework to support the future development of candidate molecules aimed at minimizing the negative side effects associated with drugs containing amine functionalities. This is vital given the existence of human diamine oxidase and vascular adhesion protein-1, which have distinct amine substrate preferences and are associated with different metabolic processes. Inhibition of these enzymes by antifungal or antiprotozoal agents, as well as classic monoamine oxidase (MAO) inhibitors, may contribute to the adverse side effects associated with drug treatment. These observations provide a rationale for the limited clinical value associated with certain amine-containing pharmaceuticals and emphasize the need for more selective AO inhibitors. This Account also discusses the novel roles of copper and TPQ in the chemistry of O2 activation and substrate oxidation. Reduced CuAOs exist in a redox equilibrium between the Cu(II)-TPQAMQ (aminoquinol) and Cu(I)-TPQSQ (semiquinone). Elucidating the roles of Cu(I), TPQSQ, and TPQAMQ in O2 activation, for example, distinguishing inner-sphere versus outer-sphere electron transfer mechanisms, has been actively investigated since the discovery of TPQSQ in 1991 and has only recently been clarified. Kinetics and spectroscopic studies encompassing metal substitution, stopped-flow and temperature-jump relaxation methods, and oxygen kinetic isotope experiments have provided strong support for an inner-sphere electron transfer step from Cu(I) to O2. Data for two enzymes support a mechanism wherein O2 prebinds to a three-coordinate Cu(I) site, yielding a [Cu(II)(η(1)-O2(-1))](+) intermediate, with H2O2 generated from ensuing rate-determining proton coupled electron transfer from TPQSQ. While kinetics data from the cobalt-substituted yeast enzyme indicated that O2 is reduced through an outer-sphere process involving TPQAMQ, new findings with a bacterial CuAO demonstrate that both the Cu(II) and Co(II) forms of the enzyme operate via parallel mechanisms involving metal-superoxide intermediates. Structural observations of a coordinated TPQSQ-Cu(I) complex in two CuAOs supports previous indications that Cu(II)/(I) ligand substitution chemistry may be mechanistically relevant. Substantial evidence indicates that rapid and reversible inner-sphere reduction of O2 at a three-coordinate Cu(I) site occurs, but the existence of a coordinated semiquinone in some AOs suggests that, in these enzymes, an outer-sphere reaction between O2 and TPQSQ may also be possible, since this is expected to be energetically favorable compared with outer-sphere electron transfer from TPQAMQ to O2.


Assuntos
Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Aminas/farmacologia , Inibidores Enzimáticos/farmacologia , Oxigênio/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Aminas/síntese química , Aminas/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular
5.
J Phys Chem B ; 117(1): 218-29, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23240607

RESUMO

The mechanism of O(2) reduction by copper amine oxidase from Arthrobacter globiformus (AGAO) is analyzed in relation to the cobalt-substituted protein. The enzyme utilizes a tyrosine-derived topaquinone cofactor to oxidize primary amines and reduce O(2) to H(2)O(2). Steady-state kinetics indicate that amine-reduced CuAGAO is reoxidized by O(2) >10(3) times faster than the CoAGAO analogue. Complementary spectroscopic studies reveal that the difference in the second order rate constant, k(cat)/K(M)(O(2)), arises from the more negative redox potential of Co(III/II) in relation to Cu(II/I). Indistinguishable competitive oxygen-18 kinetic isotope effects are observed for the two enzymes and modeled computationally using a calibrated density functional theory method. The results are consistent with a mechanism where an end-on (η(1))-metal bound superoxide is reduced to an η(1)-hydroperoxide in the rate-limiting step.


Assuntos
Amina Oxidase (contendo Cobre)/química , Metais/química , Oxigênio/química , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Modelos Moleculares , Espectrofotometria Ultravioleta
6.
J Inorg Biochem ; 115: 163-73, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22910335

RESUMO

Pseudoazurin (PAz), a well-characterized blue copper electron-transfer protein, is shown herein to be capable of mediating electron transfer to the nitrous oxide reductase (N(2)OR) from Achromobacter cycloclastes (Ac). Spectroscopic measurements demonstrate that reduced PAz is efficiently re-oxidized by a catalytic amount of N(2)OR in the presence of N(2)O. Fits of the kinetics resulted in K(M) (N(2)O) and k(cat) values of 19.1±3.8 µM and 89.3±4.2s(-1) respectively. The K(M) (PAz) was 28.8±6.6 µM. The electrochemistry of Ac pseudoazurin (AcPAz) in the presence of Ac nitrous oxide reductase (AcN(2)OR) and N(2)O displayed an enhanced cathodic sigmoidal current-potential curve, in excellent agreement with the re-oxidation of reduced AcPAz during the catalytic reduction of N(2)O by AcN(2)OR. Modeling the structure of the AcPAz-AcN(2)OR electron transfer complex indicates that AcPAz binds near Cu(A) in AcN(2)OR, with parameters consistent with the formation of a transient, weakly-bound complex. Multiple, potentially efficient electron-transfer pathways between the blue-copper center in AcPAz and Cu(A) were also identified. Collectively, the data establish that PAz is capable of donating electrons to N(2)OR in N(2)O reduction and is a strong candidate for the physiological electron donor to N(2)OR in Ac.


Assuntos
Achromobacter cycloclastes/química , Azurina/química , Proteínas de Bactérias/química , Óxido Nitroso/química , Oxirredutases/química , Transporte de Elétrons , Cinética , Oxirredução
7.
Inorg Chem ; 51(6): 3513-24, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22372371

RESUMO

The catalytically relevant, oxidized state of the active site [Cu(II)-Y·-C] of galactose oxidase (GO) is composed of antiferromagnetically coupled Cu(II) and a post-translationally generated Tyr-Cys radical cofactor [Y·-C]. The thioether bond of the Tyr-Cys cross-link has been shown experimentally to affect the stability, the reduction potential, and the catalytic efficiency of the GO active site. However, the origin of these structural and energetic effects on the GO active site has not yet been investigated in detail. Here we present copper and sulfur K-edge X-ray absorption data and a systematic computational approach for evaluating the role of the Tyr-Cys cross-link in GO. The sulfur contribution of the Tyr-Cys cross-link to the redox active orbital is estimated from sulfur K-edge X-ray absorption spectra of oxidized GO to be about 24 ± 3%, compared to the values from computational models of apo-GO (15%) and holo-GO (22%). The results for the apo-GO computational models are in good agreement with the previously reported value for apo-GO (20 ± 3% from EPR). Surprisingly, the Tyr-Cys cross-link has only a minimal effect on the inner sphere, coordination geometry of the Cu site in the holo-protein. Its effect on the electronic structure is more striking as it facilitates the delocalization of the redox active orbital onto the thioether sulfur derived from Cys, thereby reducing the spin coupling between the [Y·-C] radical and the Cu(II) center (752 cm(-1)) relative to the unsubstituted [Y·] radical and the Cu(II) center (2210 cm(-1)). Energetically, the Tyr-Cys cross-link lowers the reduction potential by about 75 mV (calculated) allowing a more facile oxidation of the holo active site versus the site without the cross-link. Overall, the Tyr-Cys cross-link confers unique ground state properties on the GO active site that tunes its function in a remarkably nuanced fashion.


Assuntos
Cisteína/química , Galactose Oxidase/metabolismo , Tirosina/química , Domínio Catalítico , Galactose Oxidase/química , Modelos Moleculares , Espectroscopia por Absorção de Raios X
8.
J Biol Inorg Chem ; 17(4): 507-15, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22258083

RESUMO

Copper amine oxidases (CAOs) are a large family of proteins that use molecular oxygen to oxidize amines to aldehydes with the concomitant production of hydrogen peroxide and ammonia. CAOs utilize two cofactors for this reaction: topaquinone (TPQ) and a Cu(II) ion. Two mechanisms for oxygen reduction have been proposed for these enzymes. In one mechanism (involving inner-sphere electron transfer to O(2)), Cu(II) is reduced by TPQ, forming Cu(I), to which O(2) binds, forming a copper-superoxide complex. In an alternative mechanism (involving outer-sphere electron transfer to O(2)), O(2) is directly reduced by TPQ, without reduction of Cu(II). Substitution of Cu(II) with Co(II) has been used to distinguish between the two mechanisms in several CAOs. Because it is unlikely that Co(II) could be reduced to Co(I) in this environment, an inner-sphere mechanism, as described above, is prevented. We adapted metal replacement methods used for other CAOs to the amine oxidase from pea seedlings (PSAO). Cobalt-substituted PSAO (CoPSAO) displayed nominal catalytic activity: k(cat) is 4.7% of the native k(cat), and K(M) (O(2)) for CoPSAO is substantially (22-fold) higher. The greatly reduced turnover number for CoPSAO suggests that PSAO uses the inner-sphere mechanism, as has been predicted from (18)O isotope effect studies (Mukherjee et al. in J Am Chem Soc 130:9459-9473, 2008), and is catalytically compromised when constrained to operate via outer-sphere electron transfer to O(2). This study, together with previous work, provides strong evidence that CAOs use both proposed mechanisms, but each homolog may prefer one mechanism over the other.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Cobalto/metabolismo , Oxigênio/metabolismo , Pisum sativum/enzimologia , Plântula/enzimologia , Cobalto/química , Transporte de Elétrons , Cinética , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Oxirredução , Oxigênio/química , Especificidade por Substrato
9.
Biochemistry ; 49(13): 2834-42, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20180543

RESUMO

The heme-binding proteins Shp and HtsA of Streptococcus pyogenes are part of the heme acquisition machinery in which Shp directly transfers its heme to HtsA. Mutagenesis and spectroscopic analyses were performed to identify the heme axial ligands in HtsA and to characterize axial mutants of HtsA. Replacements of the M79 and H229 residues, not the other methionine and histidine residues, with alanine convert UV-vis spectra of HtsA with a low-spin, hexacoordinate heme iron into spectra of high-spin heme complexes. Ferrous M79A and H229A HtsA mutants possess magnetic circular dichroism (MCD) spectra that are similar with those of proteins with pentacoordinate heme iron. Ferric M79A HtsA displays UV-vis, MCD, and resonance Raman (RR) spectra that are typical of a hexacoordinate heme iron with histidine and water ligands. In contrast, ferric H229A HtsA has UV-vis, MCD, and RR spectra that represent a pentacoordinate heme iron complex with a methionine axial ligand. Imidazole readily forms a low-spin hexacoordinate adduct with M79A HtsA with a K(d) of 40.9 muM but not with H229A HtsA, and cyanide binds to M79A and H229A with K(d) of 0.5 and 19.1 microM, respectively. The ferrous mutants rapidly bind CO and form simple CO complexes. These results establish the H229 and M79 residues as the axial ligands of the HtsA heme iron, indicate that the M79 side is more accessible to the solvent than the H229 side of the bound heme in HtsA, and provide unique spectral features for a protein with pentacoordinate, methionine-ligated heme iron. These findings will facilitate elucidation of the molecular mechanism and structural basis for rapid and direct heme transfer from Shp to HtsA.


Assuntos
Proteínas de Transporte/química , Heme/metabolismo , Hemeproteínas/química , Streptococcus pyogenes/química , Proteínas de Bactérias , Monóxido de Carbono/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Hemeproteínas/metabolismo , Ligantes , Mutação de Sentido Incorreto , Análise Espectral
10.
Artigo em Inglês | MEDLINE | ID: mdl-20124708

RESUMO

Copper amine oxidases (CAOs) are ubiquitous in nature and catalyse the oxidative deamination of primary amines to the corresponding aldehydes. Humans have three viable CAO genes (AOC1-3). AOC1 encodes human diamine oxidase (hDAO), which is the frontline enzyme for histamine metabolism. hDAO is unique among CAOs in that it has a distinct substrate preference for diamines. The structure of hDAO in space group P2(1)2(1)2(1) with two molecules in the asymmetric unit has recently been reported. Here, the structure of hDAO refined to 2.1 A resolution in space group C222(1) with one molecule in the asymmetric unit is reported.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Drosophila melanogaster , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
11.
J Inorg Biochem ; 104(3): 250-60, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20007000

RESUMO

We have used low-temperature (77K) resonance Raman (RR) spectroscopy as a probe of the electronic and molecular structure to investigate weak pi-pi interactions between the metal ion-coordinated His imidazoles and aromatic side chains in the second coordination sphere of blue copper proteins. For this purpose, the RR spectra of Met16 mutants of Achromobacter cycloclastes pseudoazurin (AcPAz) with aromatic (Met16Tyr, Met16Trp, and Met16Phe) and aliphatic (Met16Ala, Met16Val, Met16Leu, and Met16Ile) amino acid side chains have been obtained and analyzed over the 100-500cm(-1) spectral region. Subtle strengthening of the Cu(II)-S(Cys) interaction on replacing Met16 with Tyr, Trp, and Phe is indicated by the upshifted (0.3-0.8cm(-1)) RR bands involving nu(Cu-S)(Cys) stretching modes. In contrast, the RR spectra of Met16 mutants with aliphatic amino acids revealed larger (0.2-1.8cm(-1)) shifts of the nu(Cu-S)(Cys) stretching modes to a lower frequency region, which indicate a weakening of the Cu(II)-S(Cys) bond. Comparisons of the predominantly nu(Cu-S)(Cys) stretching RR peaks of the Met16X=Tyr, Trp, and Phe variants, with the molar absorptivity ratio epsilon(1)/epsilon(2) of sigma( approximately 455nm)/pi( approximately 595nm) (Cys)S-->Cu(II) charge-transfer bands in the optical spectrum and the axial/rhombic EPR signals, revealed a slightly more trigonal disposition of ligands about the copper(II) ion. In contrast, the RR spectra of Met16Z=Ala, Val, Leu, and Ile variants with aliphatic amino acid side chains show a more tetrahedral perturbation of the copper active site, as judged by the lower frequencies of the nu(Cu-S)(Cys) stretching modes, much larger values of the epsilon(1)/epsilon(2) ratio, and the increased rhombicity of the EPR spectra.


Assuntos
Achromobacter cycloclastes , Azurina , Proteínas de Bactérias , Proteínas de Transporte , Metionina/genética , Mutação , Achromobacter cycloclastes/química , Achromobacter cycloclastes/genética , Azurina/química , Azurina/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Domínio Catalítico , Eletroquímica , Metaloproteínas/química , Metaloproteínas/genética , Metionina/metabolismo , Modelos Moleculares , Conformação Proteica , Análise Espectral Raman
12.
Biochemistry ; 48(41): 9810-22, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19764817

RESUMO

Humans have three functioning genes that encode copper-containing amine oxidases. The product of the AOC1 gene is a so-called diamine oxidase (hDAO), named for its substrate preference for diamines, particularly histamine. hDAO has been cloned and expressed in insect cells and the structure of the native enzyme determined by X-ray crystallography to a resolution of 1.8 A. The homodimeric structure has the archetypal amine oxidase fold. Two active sites, one in each subunit, are characterized by the presence of a copper ion and a topaquinone residue formed by the post-translational modification of a tyrosine. Although hDAO shares 37.9% sequence identity with another human copper amine oxidase, semicarbazide sensitive amine oxidase or vascular adhesion protein-1, its substrate binding pocket and entry channel are distinctly different in accord with the different substrate specificities. The structures of two inhibitor complexes of hDAO, berenil and pentamidine, have been refined to resolutions of 2.1 and 2.2 A, respectively. They bind noncovalently in the active-site channel. The inhibitor binding suggests that an aspartic acid residue, conserved in all diamine oxidases but absent from other amine oxidases, is responsible for the diamine specificity by interacting with the second amino group of preferred diamine substrates.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Dimerização , Diminazena/análogos & derivados , Diminazena/metabolismo , Drosophila/enzimologia , Humanos , Cinética , Metalotioneína/genética , Modelos Moleculares , Pentamidina/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Especificidade por Substrato , Difração de Raios X
13.
Biochemistry ; 47(52): 13907-20, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19053231

RESUMO

The role of copper during the reoxidation of substrate-reduced amine oxidases by O(2) has not yet been definitively established. Both outer-sphere and inner-sphere pathways for the reduction of O(2) to H(2)O(2) have been proposed. A key step in the inner-sphere mechanism is the reaction of O(2) directly with the Cu(I) center of a Cu(I)-semiquinone intermediate. To thoroughly examine this possibility, we have measured the spectral changes associated with single-turnover reoxidation by O(2) of substrate-reduced Arthrobacter globiformis amine oxidase (AGAO) under a wide range of conditions. We have previously demonstrated that the internal electron-transfer reaction [Cu(II)-TPQ(AMQ) --> Cu(I)-TPQ(SQ)] (where TPQ(AMQ) is the aminoquinol form of reduced TPQ and TPQ(SQ) is the semiquinone form) occurs at a rate that could permit the reaction of O(2) with both species to be observed on the stopped-flow time scale [Shepard, E. M., and Dooley, D. M. (2006) J. Biol. Inorg. Chem. 11, 1039-1048]. The transient absorption spectra observed for the reaction of O(2) with substrate-reduced AGAO provide compelling support for the reaction of the Cu(I)-TPQ(SQ) form. Further, global analysis of the kinetics and the transient absorption spectra are fully consistent with an inner-sphere reaction of the Cu(I)-semiquinone intermediate with O(2) and are inconsistent with an outer-sphere mechanism for the reaction of the reduced enzyme with O(2).


Assuntos
Arthrobacter/enzimologia , Cobre , Monoaminoxidase/metabolismo , Oxigênio/metabolismo , Transporte de Elétrons , Mononucleotídeo de Flavina/química , Cinética , Oxirredução , Análise Espectral
14.
Biochemistry ; 47(39): 10428-39, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18771294

RESUMO

Galactose oxidase (GO) belongs to a class of proteins that self-catalyze assembly of their redox-active cofactors from active site amino acids. Generation of enzymatically active GO appears to require at least four sequential post-translational modifications: cleavage of a secretion signal sequence, copper-dependent cleavage of an N-terminal pro sequence, copper-dependent formation of a C228-Y272 thioether bond, and generation of the Y272 radical. The last two processes were investigated using a truncated protein (termed premat-GO) lacking the pro sequence and purified under copper-free conditions. Reactions of premat-GO with Cu(II) were investigated using optical, EPR, and resonance Raman spectroscopy, SDS-PAGE, and X-ray crystallography. Premat-GO reacted anaerobically with excess Cu(II) to efficiently form the thioether bond but not the Y272 radical. A potential C228-copper coordinated intermediate (lambda max = 406 nm) in the processing reaction, which had not yet formed the C228-Y272 cross-link, was identified from the absorption spectrum. A copper-thiolate protein complex, with copper coordinated to C228, H496, and H581, was also observed in a 3 min anaerobic soak by X-ray crystallography, whereas a 24 h soak revealed the C228-Y272 thioether bond. In solution, addition of oxygenated buffer to premat-GO preincubated with excess Cu(II) generated the Y272 radical state. On the basis of these data, a mechanism for the formation of the C228-Y272 bond and tyrosyl radical generation is proposed. The 406 nm complex is demonstrated to be a catalytically competent processing intermediate under anaerobic conditions. We propose a potential mechanism which is in common with aerobic processing by Cu(II) until the step at which the second electron acceptor is required.


Assuntos
Cisteína/metabolismo , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Tirosina/metabolismo , Domínio Catalítico , Cobre/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Modelos Moleculares , Oxigênio/metabolismo , Conformação Proteica , Espectrofotometria
15.
Artigo em Inglês | MEDLINE | ID: mdl-18607080

RESUMO

Complexes of Arthrobacter globiformis amine oxidase (AGAO) with the inhibitors benzylhydrazine and tranylcypromine (an antidepressant drug) have been refined at 1.86 and 1.65 A resolution, respectively. Both inhibitors form covalent adducts with the TPQ cofactor. A tyrosine residue, proposed to act as a gate to the AGAO active site, is in its open conformation.


Assuntos
Amina Oxidase (contendo Cobre)/química , Arthrobacter/enzimologia , Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Hidrazinas/química , Tranilcipromina/química , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Arthrobacter/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X
16.
J Am Chem Soc ; 130(29): 9459-73, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18582059

RESUMO

Copper and topaquinone (TPQ) containing amine oxidases utilize O2 for the metabolism of biogenic amines while concomitantly generating H2O2 for use by the cell. The mechanism of O2 reduction has been the subject of long-standing debate due to the obscuring influence of a proton-coupled electron transfer between the tyrosine-derived TPQ and copper, a rapidly established equilibrium precluding assignment of the enzyme in its reactive form. Here, we show that substrate-reduced pea seedling amine oxidase (PSAO) exists predominantly in the Cu(I), TPQ semiquinone state. A new mechanistic proposal for O2 reduction is advanced on the basis of thermodynamic considerations together with kinetic studies (at varying pH, temperature, and viscosity), the identification of steady-state intermediates, and the analysis of competitive oxygen kinetic isotope effects, (18)O KIEs, [kcat/KM((16,16)O2)]/[kcat/KM((16,18)O2)]. The (18)O KIE = 1.0136 +/- 0.0013 at pH 7.2 is independent of temperature from 5 degrees C to 47 degrees C and insignificantly changed to 1.0122 +/- 0.0020 upon raising the pH to 9, thus indicating the absence of kinetic complexity. Using density functional methods, the effect is found to be precisely in the range expected for reversible O2 binding to Cu(I) to afford a superoxide, [Cu(II)(eta(1)-O2)(-I)](+), intermediate. Electron transfer from the TPQ semiquinone follows in the first irreversible step to form a peroxide, Cu(II)(eta(1)-O2)(-II), intermediate driving the reduction of O2. The similar (18)O KIEs reported for copper amine oxidases from other sources raise the possibility that all enzymes react by related inner-sphere mechanisms although additional experiments are needed to test this proposal.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Benzilaminas/química , Benzilaminas/metabolismo , Catálise , Medição da Troca de Deutério , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Oxirredução , Isótopos de Oxigênio , Putrescina/química , Putrescina/metabolismo , Espectrofotometria/métodos , Termodinâmica , Viscosidade
17.
J Am Chem Soc ; 130(25): 8069-78, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18507382

RESUMO

The copper amine oxidase from Arthrobacter globiformis (AGAO) is reversibly inhibited by molecular wires comprising a Ru(II) complex head group and an aromatic tail group joined by an alkane linker. The crystal structures of a series of Ru(II)-wire-AGAO complexes differing with respect to the length of the alkane linker have been determined. All wires lie in the AGAO active-site channel, with their aromatic tail group in contact with the trihydroxyphenylalanine quinone (TPQ) cofactor of the enzyme. The TPQ cofactor is consistently in its active ("off-Cu") conformation, and the side chain of the so-called "gate" residue Tyr296 is consistently in the "gate-open" conformation. Among the wires tested, the most stable complex is produced when the wire has a -(CH2)4- linker. In this complex, the Ru(II)(phen)(bpy)2 head group is level with the protein molecular surface. Crystal structures of AGAO in complex with optically pure forms of the C4 wire show that the linker and head group in the two enantiomers occupy slightly different positions in the active-site channel. Both the Lambda and Delta isomers are effective competitive inhibitors of amine oxidation. Remarkably, inhibition by the C4 wire shows a high degree of selectivity for AGAO in comparison with other copper-containing amine oxidases.


Assuntos
Amina Oxidase (contendo Cobre)/química , Arthrobacter/enzimologia , Rutênio/química , Sítios de Ligação , Cristalografia por Raios X , Cinética , Modelos Moleculares , Ligação Proteica , Estereoisomerismo , Especificidade por Substrato
18.
J Biol Chem ; 283(26): 18450-60, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18467329

RESUMO

The iron-regulated surface proteins IsdA, IsdB, and IsdC and transporter IsdDEF of Staphylococcus aureus are involved in heme acquisition. To establish an experimental model of heme acquisition by this system, we have investigated hemin transfer between the various couples of human methemoglobin (metHb), IsdA, IsdB, IsdC, and IsdE by spectroscopic and kinetic analyses. The efficiencies of hemin transfer from hemin-containing donors (holo-protein) to different hemin-free acceptors (apo-protein) were examined, and the rates of the transfer reactions were compared with that of indirect loss of hemin from the relevant donor to H64Y/V68F apomyoglobin. The efficiencies, spectral changes, and kinetics of the transfer reactions demonstrate that: 1) metHb directly transfers hemin to apo-IsdB, but not to apo-IsdA, apo-IsdC, and apo-IsdE; 2) holo-IsdB directly transfers hemin to apo-IsdA and apo-IsdC, but not to apo-IsdE; 3) apo-IsdE directly acquires hemin from holo-IsdC, but not from holo-IsdB and holo-IsdA; and 4) IsdB and IsdC enhance hemin transfer from metHb to apo-IsdC and from holo-IsdB to apo-IsdE, respectively. Taken together with our recent finding that holo-IsdA directly transfers its hemin to apo-IsdC, these results provide direct experimental evidence for a model in which IsdB acquires hemin from metHb and transfers it directly or through IsdA to IsdC. Hemin is then relayed to IsdE, the lipoprotein component of the IsdDEF transporter.


Assuntos
Regulação da Expressão Gênica , Heme/farmacocinética , Ferro/metabolismo , Metemoglobina/metabolismo , Staphylococcus aureus/metabolismo , Transporte Biológico , Clonagem Molecular , Hemina/química , Humanos , Cinética , Metemoglobina/química , Modelos Biológicos , Mioglobina/química , Proteínas Recombinantes/química , Infecções Estafilocócicas/metabolismo , Propriedades de Superfície
19.
J Biol Chem ; 283(11): 6668-76, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18184657

RESUMO

The iron-regulated surface determinants (Isd) of Staphylococcus aureus, including surface proteins IsdA, IsdB, IsdC, and IsdH and ATP-binding cassette transporter IsdDEF, constitute the machinery for acquiring heme as a preferred iron source. Here we report hemin transfer from hemin-containing IsdA (holo-IsdA) to hemin-free IsdC (apo-IsdC). The reaction has an equilibrium constant of 10 +/- 5 at 22 degrees C in favor of holo-IsdC formation. During the reaction, holo-IsdA binds to apo-IsdC and then transfers the cofactor to apo-IsdC with a rate constant of 54.3 +/- 1.8 s(-1) at 25 degrees C. The transfer rate is >70,000 times greater than the rate of simple hemin dissociation from holo-IsdA into solvent (k transfer = 54.3 s(-1) versus k -hemin = 0.00076 s(-1)). The standard free energy change, Delta G 0, is -27 kJ/mol for the formation of the holo-IsdA-apo-IsdC complex. IsdC has a higher affinity for hemin than IsdA. These results indicate that the IsdA-to-IsdC hemin transfer is through the activated holo-IsdA-apo-IsdC complex and is driven by the higher affinity of apo-IsdC for the cofactor. These findings demonstrate for the first time in the Isd system that heme transfer is rapid, direct, and affinity-driven from IsdA to IsdC. These results also provide the first example of heme transfer from one surface protein to another surface protein in Gram-positive bacteria and, perhaps most importantly, indicate that the mechanism of activated heme transfer, which we previously demonstrated between the streptococcal proteins Shp and HtsA, may apply in general to all bacterial heme transport systems.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Heme/química , Staphylococcus aureus/metabolismo , Clonagem Molecular , Relação Dose-Resposta a Droga , Bactérias Gram-Positivas/metabolismo , Hemina/química , Cinética , Modelos Biológicos , Modelos Químicos , Proteínas Recombinantes/química , Temperatura , Termodinâmica , Fatores de Tempo
20.
J Biol Inorg Chem ; 13(3): 371-83, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18057969

RESUMO

A systematic in silico approach has been employed to generate sound, experimentally validated active-site models for galactose oxidase (GO) using a hybrid density functional, B(38HF)P86. GO displays three distinct oxidation states: oxidized [Cu(II)-Y*]; semireduced [Cu(II)-Y]; and reduced [Cu(I)-Y]. Only the [Cu(II)-Y*] and the [Cu(I)-Y] states are assumed to be involved in the catalytic cycle, but their structures have not yet been determined. We have developed several models (1-7) for the [Cu(II)-Y*] state that were evaluated by comparison of our computational results with experimental data. An extended model system (6) that includes solvent molecules and second coordination sphere residues (R330, Y405, and W290) is essential to obtain an experimentally correct electronic structure of the active site. The optimized structure of 6 resulted in a five-coordinate Cu site with a protein radical centered on the Tyr-Cys cofactor. We further validated our converged model with the largest model (7) that included additional outer-sphere residues (Q406, H334, Y329, G513, and T580) and water molecules. Adding these residues did not affect significantly the active site's electronic and geometric structures. Using both 6 and 7, we explored the redox dependence of the active-site structure. We obtained four- and three-coordinate Cu sites for [Cu(II)-Y] and [Cu(I)-Y] states, respectively, that corroborate well with the experimental data. The relative energies of these states were validated by a comparison with experimental redox potentials. Collectively, our computational GO models well reproduce the physicochemical characteristics of the individual states, including their redox behaviors.


Assuntos
Galactose Oxidase/química , Modelos Moleculares , Domínio Catalítico , Cristalografia por Raios X , Galactose Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...