Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1267: 117-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894480

RESUMO

Antibiotic resistance is a global epidemic, becoming increasingly pressing due to its rapid spread. There is thus a critical need to develop new therapeutic approaches. In addition to searching for new antibiotics, looking into existing mechanisms of natural host defense may enable researchers to improve existing defense mechanisms, and to develop effective, synthetic drugs guided by natural principles. Histones, primarily known for their role in condensing mammalian DNA, are antimicrobial and share biochemical similarities with antimicrobial peptides (AMPs); however, the mechanism by which histones kill bacteria is largely unknown. Both AMPs and histones are similar in size, cationic, contain a high proportion of hydrophobic amino acids, and possess the ability to form alpha helices. AMPs, which mostly kill bacteria through permeabilization or disruption of the biological membrane, have recently garnered significant attention for playing a key role in host defenses. This chapter outlines the structure and function of histone proteins as they compare to AMPs and provides an overview of their role in innate immune responses, especially regarding the action of specific histones against microorganisms and their potential mechanism of action against microbial pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/imunologia , Bactérias/imunologia , Histonas/química , Histonas/imunologia , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Histonas/farmacologia , Imunidade Inata
2.
Nat Commun ; 11(1): 3888, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753666

RESUMO

First proposed as antimicrobial agents, histones were later recognized for their role in condensing chromosomes. Histone antimicrobial activity has been reported in innate immune responses. However, how histones kill bacteria has remained elusive. The co-localization of histones with antimicrobial peptides (AMPs) in immune cells suggests that histones may be part of a larger antimicrobial mechanism in vivo. Here we report that histone H2A enters E. coli and S. aureus through membrane pores formed by the AMPs LL-37 and magainin-2. H2A enhances AMP-induced pores, depolarizes the bacterial membrane potential, and impairs membrane recovery. Inside the cytoplasm, H2A reorganizes bacterial chromosomal DNA and inhibits global transcription. Whereas bacteria recover from the pore-forming effects of LL-37, the concomitant effects of H2A and LL-37 are irrecoverable. Their combination constitutes a positive feedback loop that exponentially amplifies their antimicrobial activities, causing antimicrobial synergy. More generally, treatment with H2A and the pore-forming antibiotic polymyxin B completely eradicates bacterial growth.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Estruturas Cromossômicas/efeitos dos fármacos , Histonas/metabolismo , Prótons , Animais , Estruturas Cromossômicas/metabolismo , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Imunidade Inata , Mamíferos , Polimixina B/farmacologia , Análise de Sequência de RNA , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
3.
Traffic ; 18(10): 658-671, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28731566

RESUMO

The kinesin family proteins are often studied as prototypical molecular motors; a deeper understanding of them can illuminate regulation of intracellular transport. It is typically assumed that they function identically. Here we find that this assumption of homogeneous function appears incorrect: variation among motors' velocities in vivo and in vitro is larger than the stochastic variation expected for an ensemble of "identical" motors. When moving on microtubules, slow and fast motors are persistently slow, and fast, respectively. We develop theory that provides quantitative criteria to determine whether the observed single-molecule variation is too large to be generated from an ensemble of identical molecules. To analyze such heterogeneity, we group traces into homogeneous sub-ensembles. Motility studies varying the temperature, pH and glycerol concentration suggest at least 2 distinct functional states that are independently affected by external conditions. We end by investigating the functional ramifications of such heterogeneity through Monte-Carlo multi-motor simulations.


Assuntos
Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Simulação de Dinâmica Molecular , Animais , Linhagem Celular Tumoral , Drosophila , Proteínas de Drosophila/química , Humanos , Cinesinas/química , Movimento (Física) , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA