Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726661

RESUMO

Cyclometallated Pt(II) complexes possessing hydrophobic 2-phenylpyridine (ppy) ligands and hydrophilic acetonylacetone (acac) ligands have been investigated for their ability to detect amyloid fibrils via luminescence response. Using hen egg-white lysozyme (HEWL) as a model amyloid protein, Pt(II) complexes featuring benzanilide-substituted ppy ligands and ethylene glycol-functionalized acac ligands demonstrated enhanced luminescence in the presence of HEWL fibrils, whereas Pt(II) complexes lacking complementary hydrophobic/hydrophilic ligand sets displayed little to no emission enhancement. An amphiphilic Pt(II) complex incorporating a bis(ethylene glycol)-derivatized acac ligand was additionally found to trigger restructuring of HEWL fibrils into smaller spherical aggregates. Amphiphilic Pt(II) complexes were generally non-toxic to SH-SY5Y neuroblastoma cells, and several complexes also exhibited enhanced luminescence in the presence of Aß42 fibrils associated with Alzheimer's disease. This study demonstrates that easily prepared and robust (ppy)PtII(acac) complexes show promising reactivity toward amyloid fibrils and represent attractive molecular scaffolds for design of small-molecule probes targeting amyloid assemblies.

2.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609242

RESUMO

The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies. Highlights: PCB 52 was present in adipose, brain, liver, and serum 3 weeks after PCB exposureLiver and serum contained hydroxylated, sulfated, and methylated PCB 52 metabolitesMetabolomics analysis revealed minor changes in endogenous serum metabolitesLevels of dopamine and its metabolites in the brain were not affected by PCB 52.

3.
Environ Toxicol Pharmacol ; 102: 104245, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572994

RESUMO

The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies.


Assuntos
Bifenilos Policlorados , Ratos , Feminino , Animais , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas
4.
Chem Res Toxicol ; 36(6): 971-981, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37279407

RESUMO

Exposure to polychlorinated biphenyls (PCBs) is associated with developmental neurotoxicity and neurodegenerative disorders; however, the underlying mechanisms of pathogenesis are unknown. Existing literature has focused mainly on using neurons as a model system to study mechanisms of PCB-mediated neurotoxicity, overlooking the role of glial cells, such as astrocytes. As normal brain function is largely astrocyte-dependent, we hypothesize that astrocytes play an important role in PCB-mediated injury to neurons. We assessed the toxicity of two commercial PCB mixtures, Aroclor 1016 and Aroclor 1254, and a non-Aroclor PCB mixture found in residential air called the Cabinet mixture, all of which contain lower chlorinated PCBs (LC-PCBs) found in indoor and outdoor air. We further assessed the toxicity of five abundant airborne LC-PCBs and their corresponding human-relevant metabolites in vitro models of astrocytes, namely, the C6 cell line and primary astrocytes isolated from Sprague-Dawley rats and C57BL/6 mice. PCB52 and its human-relevant hydroxylated and sulfated metabolites were found to be the most toxic compounds. No significant sex-dependent cell viability differences were observed in rat primary astrocytes. Based on the equilibrium partitioning model, it was predicted that the partitioning of LC-PCBs and their corresponding metabolites in biotic and abiotic compartments of the cell culture system is structure-dependent and that the observed toxicity is consistent with this prediction. This study, for the first time, shows that astrocytes are sensitive targets of LC-PCBs and their human-relevant metabolites and that further research to identify mechanistic targets of PCB exposure in glial cells is necessary.


Assuntos
Bifenilos Policlorados , Camundongos , Humanos , Ratos , Animais , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Astrócitos/metabolismo , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade
5.
Chem Res Toxicol ; 34(9): 1948-1952, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34491731

RESUMO

Exposure to polychlorinated biphenyls (PCBs) is implicated in adverse neurotoxic outcomes. However, the impact of PCBs on the adolescent nervous system has received inadequate attention. We conducted a comprehensive review to identify studies of neurotoxic outcomes following PCB exposure during the adolescent period in rodents. Only four papers were found to meet all inclusion criteria. PCB exposure in adolescent rats caused disruptions in the main functions of the prefrontal cortex, resulting in cognitive deficits. This comprehensive review demonstrates that more research is needed to characterize how PCB exposure adversely affects the adolescent nervous system.


Assuntos
Sistema Nervoso/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Adolescente , Animais , Humanos
6.
Chem Res Toxicol ; 34(10): 2184-2193, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34506109

RESUMO

Monoamine oxidase (MAO) catalyzes the oxidative deamination of dopamine and norepinephrine to produce 3,4-dihydroxyphenylacetaldehyde (DOPAL) and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), respectively. Both of these aldehydes are potently cytotoxic and have been implicated in pathogenesis of neurodegenerative and cardiometabolic disorders. Previous work has demonstrated that both the catechol and aldehyde moieties of DOPAL are reactive and cytotoxic via their propensity to cause macromolecular cross-linking. With certain amines, DOPAL likely reacts via a Schiff base before oxidative activation of the catechol and rearrangement to a stable indole product. Our current work expands on this reactivity and includes the less-studied DOPEGAL. Although we confirmed that antioxidants mediated DOPAL's reactivity with carnosine and N-acetyl-l-lysine, antioxidants had no effect on reactivity with l-cysteine. Therefore, we propose a non-oxidative mechanism where, following Schiff base formation, the thiol of l-cysteine reacts to form a thiazolidine. Similarly, we demonstrate that DOPEGAL forms a putative thiazolidine conjugate with l-cysteine. We identified and characterized both l-cysteine conjugates via HPLC-MS and additionally identified a DOPEGAL adduct with carnosine, which is likely an Amadori product. Furthermore, we were able to demonstrate that these conjugates are produced in biological systems via MAO after treatment of the cell lysate with norepinephrine or dopamine along with the corresponding nucleophiles (i.e., l-cysteine and carnosine). As it has been established that metabolic and oxidative stress leads to increased MAO activity and accumulation of DOPAL and DOPEGAL, it is conceivable that conjugation of these aldehydes to carnosine or l-cysteine is a newly identified detoxification pathway. Furthermore, the ability to characterize these adducts via analytical techniques reveals their potential for use as biomarkers of dopamine or norepinephrine metabolic disruption.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Carnosina/metabolismo , Catecóis/metabolismo , Cisteína/metabolismo , Monoaminoxidase/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular
7.
Neurotoxicology ; 86: 85-93, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314733

RESUMO

Parkinson's disease is characterized by dopamine dyshomeostasis and oxidative stress. The aldehyde metabolite of dopamine, 3,4-dihydroxyphenylacetaldehyde (DOPAL), has been reported to be cytotoxic and capable of protein modification. Protein modification by DOPAL has been implicated in the pathogenesis of Parkinson's disease, but the complete pathology is unknown. Our findings show that DOPAL modifies glutathione S-transferase (GST), an important enzyme in the antioxidant defense system. DOPAL, dopamine, and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), inhibited the activity of GST isolated from N27 dopaminergic cells at an IC50 of 31.46 µM, 82.32 µM, and 260.0 µM, respectively. DOPAL, dopamine, and DOPAC inhibited commercially available equine liver GST at an IC50 of 23.72 µM, 32.17 µM, and 73.70 µM, respectively. This inhibition was time dependent and irreversible. 1 mM ʟ-cysteine or glutathione fully protected GST activity from DOPAL, DA, and DOPAC inhibition. 1 mM carnosine partially protected GST activity from DA inhibition. Furthermore, ʟ-cysteine was found to protect GST by forming a putative thiazolidine conjugate with DOPAL. We conclude that GST inactivation may be a part of the broader etiopathology of Parkinson's disease.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glutationa Transferase/antagonistas & inibidores , Animais , Linhagem Celular , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Cavalos , Ratos
8.
Chembiochem ; 22(9): 1609-1620, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480159

RESUMO

Regulator of G protein signaling (RGS) proteins have attracted attention as a result of their primary role in directing the specificity as well as the temporal and spatial aspects of G protein-coupled receptor signaling. In addition, alterations in RGS protein expression have been observed in a number of disease states, including certain cancers. In this area, RGS17 is of particular interest. It has been demonstrated that, while RGS17 is expressed primarily in the central nervous system, it has been found to be inappropriately expressed in lung, prostate, breast, cervical, and hepatocellular carcinomas. Overexpression of RGS17 leads to dysfunction in inhibitory G protein signaling and an overproduction of the intracellular second messenger cAMP, which in turn alters the transcription patterns of proteins known to promote various cancer types. Suppressing RGS17 expression with RNA interference (RNAi) has been found to decrease tumorigenesis and sufficiently prevents cancer cell migration, leading to the hypothesis that pharmacological blocking of RGS17 function could be useful in anticancer therapies. We have identified small-molecule fragments capable of binding the RGS homology (RH) domain of RGS17 by using a nuclear magnetic resonance fragment-based screening approach. By chemical shift mapping of the two-dimensional 15 N,1 H heteronuclear single quantum coherence (HSQC) spectra of the backbone-assigned 15 N-labeled RGS17-RH, we determined the fragment binding sites to be distant from the Gα interface. Thus, our study identifies a putative fragment binding site on RGS17 that was previously unknown.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas RGS/metabolismo , Sítios de Ligação , Humanos , Cinética , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Proteínas RGS/antagonistas & inibidores , Proteínas RGS/genética , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
9.
Antioxid Redox Signal ; 35(4): 235-251, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33066717

RESUMO

Aims: Catecholamine metabolism via monoamine oxidase (MAO) contributes to cardiac injury in models of ischemia and diabetes, but the pathogenic mechanisms involved are unclear. MAO deaminates norepinephrine (NE) and dopamine to produce H2O2 and highly reactive "catecholaldehydes," which may be toxic to mitochondria due to the localization of MAO to the outer mitochondrial membrane. We performed a comprehensive analysis of catecholamine metabolism and its impact on mitochondrial energetics in atrial myocardium obtained from patients with and without type 2 diabetes. Results: Content and maximal activity of MAO-A and MAO-B were higher in the myocardium of patients with diabetes and they were associated with body mass index. Metabolomic analysis of atrial tissue from these patients showed decreased catecholamine levels in the myocardium, supporting an increased flux through MAOs. Catecholaldehyde-modified protein adducts were more abundant in myocardial tissue extracts from patients with diabetes and were confirmed to be MAO dependent. NE treatment suppressed mitochondrial ATP production in permeabilized myofibers from patients with diabetes in an MAO-dependent manner. Aldehyde dehydrogenase (ALDH) activity was substantially decreased in atrial myocardium from these patients, and metabolomics confirmed lower levels of ALDH-catalyzed catecholamine metabolites. Proteomic analysis of catechol-modified proteins in isolated cardiac mitochondria from these patients identified >300 mitochondrial proteins to be potential targets of these unique carbonyls. Innovation and Conclusion: These findings illustrate a unique form of carbonyl toxicity driven by MAO-mediated metabolism of catecholamines, and they reveal pathogenic factors underlying cardiometabolic disease. Importantly, they suggest that pharmacotherapies targeting aldehyde stress and catecholamine metabolism in heart may be beneficial in patients with diabetes and cardiac disease. Antioxid. Redox Signal. 35, 235-251.


Assuntos
Catecolaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias Cardíacas/metabolismo , Aldeído Desidrogenase/metabolismo , Humanos , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Oxirredução , Fosforilação
10.
ACS Chem Neurosci ; 11(6): 840-850, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32058688

RESUMO

Aggregated amyloid beta (Aß) is widely reported to cause neuronal dystrophy and toxicity through multiple pathways: oxidative stress, disrupting calcium homeostasis, and cytoskeletal dysregulation. The neuro-cytoskeleton is a dynamic structure that reorganizes to maintain cell homeostasis in response to varying soluble and physical cues presented from the extracellular matrix (ECM). Due this relationship between cell health and the ECM, we hypothesize that amyloid toxicity may be directly influenced by physical changes to the ECM (stiffness and dimensionality) through mechanosensitive pathways, and while previous studies demonstrated that Aß can distort focal adhesion signaling with pathological consequences, these studies do not address the physical contribution from a physiologically relevant matrix. To test our hypothesis that physical cues can adjust Aß toxicity, SH-SY5Y human neuroblastoma and primary human cortical neurons were plated on soft and stiff, 2D polyacrylamide matrices or suspended in 3D collagen gels. Each cell culture was exposed to escalating concentrations of oligomeric or fibrillated Aß(1-42) with MTS viability and lactate dehydrogenase toxicity assessed. Actin restructuring was further monitored in live cells by atomic force microscopy nanoindentation, and our results demonstrate that increasing either matrix stiffness or exposure to oligomeric Aß promotes F-actin polymerization and cell stiffening, while mature Aß fibrils yielded no apparent cell stiffening and minor toxicity. Moreover, the rounded, softer mechanical phenotype displayed by cells plated onto a compliant matrix also demonstrated a resilience to oligomeric Aß as noted by a significant recovery of viability when compared to same-dosed cells plated on traditional tissue culture plastic. This recovery was reproduced pharmacologically through inhibiting actin polymerization with cytochalasin D prior to Aß exposure. These studies indicate that the cell-ECM interface can modify amyloid toxicity in neurons and the matrix-mediated pathways that promote this protection may offer unique targets in amyloid pathologies like Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Linhagem Celular Tumoral , Neuroblastoma , Fragmentos de Peptídeos , Humanos , Neurônios , Fenótipo
11.
Curr Opin Toxicol ; 13: 16-21, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31304429

RESUMO

Oxidative decomposition of several biomolecules produces reactive aldehydes. Monoamine neurotransmitters are enzymatically converted to aldehydes via monoamine oxidase followed by further metabolism such as carbonyl oxidation/reduction. Elevated levels of aldehyde intermediates are implicated as factors in several pathological conditions, including Parkinson's disease. The biogenic aldehydes produced from dopamine, norepinephrine and serotonin are known to be toxic, generate reactive oxygen species and/or cause aggregation of proteins such as α-synuclein. Polyunsaturated lipids undergo oxidative decomposition to produce biogenic aldehydes, including 4-hydroxy-2-nonenal and malondialdehyde. These lipid aldehydes, some including an α,ß-unsaturated carbonyl, target important proteins such as α-synuclein, proteasome degradation and G-protein-coupled signaling. Overproduction of biogenic aldehydes is a hypothesized factor in neurodegeneration; preventing their formation or scavenging may provide means for neuroprotection.

12.
Toxicol Sci ; 171(2): 406-420, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268529

RESUMO

Polychlorinated biphenyls (PCBs) have been associated with neurodevelopmental disorders. Several neurotoxic congeners display axial chirality and atropselectively affect cellular targets implicated in PCB neurotoxicity. Only limited information is available regarding the atropselective metabolism of these congeners in humans and their atropselective effects on neurotoxic outcomes. Here we investigate the hypothesis that the oxidation of 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) by human liver microsomes (HLMs) and their effects on dopaminergic cells in culture are atropselective. Racemic PCB 132 was incubated with pooled or single donor HLMs, and levels and enantiomeric fractions of PCB 132 and its metabolites were determined gas chromatographically. The major metabolite was either 2,2',3,4,4',6'-hexachlorobiphenyl-3'-ol (3'-140), a 1,2-shift product, or 2,2',3,3',4,6'-hexachlorobiphenyl-5'-ol (5'-132). The PCB 132 metabolite profiles displayed interindividual differences and depended on the PCB 132 atropisomer. Computational studies suggested that 3'-140 is formed via a 3,4-arene oxide intermediate. The second eluting atropisomer of PCB 132, first eluting atropisomer of 3'-140, and second eluting atropisomer of 5'-132 were enriched in all HLM incubations. Enantiomeric fractions of the PCB 132 metabolites differed only slightly between the single donor HLM preparations investigated. Reactive oxygen species and levels of dopamine and its metabolites were not significantly altered after a 24 h exposure of dopaminergic cells to pure PCB 132 atropisomers. These findings suggest that there are interindividual differences in the atropselective biotransformation of PCB 132 to its metabolites in humans; however, the resulting atropisomeric enrichment of PCB 132 is unlikely to affect neurotoxic outcomes associated with the endpoints investigated in the study.

13.
ACS Chem Neurosci ; 10(3): 1284-1293, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30499651

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the extracellular deposition of dense amyloid beta plaques. Emerging evidence suggests that the production of these plaques is initiated by the intracellular uptake and lysosomal preconcentration of the amyloid-beta (Aß) peptide. All previous endocytosis studies assess Aß uptake with cells plated on traditional tissue culture plastic; however, brain tissue is distinctly soft with a low-kPa stiffness. Use of an ultrastiff plastic/glass substrate prompts a mechanosensitive response (increased cell spreading, cell stiffness, and membrane tension) that potentially distorts a cell's endocytic behavior from that observed in vivo or in a more physiologically relevant mechanical environment. Our studies demonstrate substrate stiffness significantly modifies the behavior of undifferentiated SH-SY5Y neuroblastoma, where cells plated on soft (∼1 kPa) substrates display a rounded morphology, decreased actin polymerization, reduced adhesion (decreased ß1 integrin expression), and reduced cell stiffness compared to cells plated on tissue culture plastic. Moreover, these neuroblastoma on softer substrates display a preferential increase in the uptake of the Aß(1-42) compared to Aß(1-40), while both isoforms display a clear stiffness-dependent increase of uptake relative to cells plated on plastic. Considering the brain is a soft tissue that continues to soften with age, this mechanosensitive endocytosis of Aß has significant implications for understanding age-related neurodegeneration and the mechanism behind Aß uptake and fibril production. Overall, identifying these physical factors that contribute to the pathology of AD may offer novel avenues of therapeutic intervention.


Assuntos
Actinas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endocitose/fisiologia , Matriz Extracelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Resinas Acrílicas , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Colesterol/metabolismo , Elasticidade , Géis , Vidro , Humanos
14.
Amino Acids ; 51(1): 97-102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30191330

RESUMO

Oxidative deamination of norepinephrine (NE) and dopamine (DA) by monoamine oxidase (MAO) generates the catecholaldehydes 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) and 3,4-dihydroxyphenylacetaldehyde (DOPAL), respectively, and H2O2. Catecholaldehydes are highly reactive electrophiles that have been implicated as causal factors in the etiology of neurodegenerative diseases and cardiac injury from ischemia and diabetes. The reactivity of both catechol and aldehyde groups enables the catecholaldehdyes to cross-link proteins and other biological molecules. Carnosine is a ß-alanyl-histidine dipeptide found in millimolar concentrations in brain and myocardium. It is well known to detoxify aldehydes formed from oxidized lipids and sugars, yet the reactivity of carnosine with catecholaldehydes has never been reported. Here, we investigated the ability of carnosine to form conjugates with DOPAL and DOPEGAL. Both catecholaldehydes were highly reactive towards L-cysteine (L-Cys), as well as carnosine; however, glutathione (GSH) showed essentially no reactivity towards DOPAL. In contrast, GSH readily reacted with the lipid peroxidation product 4-hydroxy-2-nonenal (4HNE), while carnosine showed low reactivity to 4HNE by comparison. To determine whether carnosine mitigates catecholaldehyde toxicity, samples of atrial myocardium were collected from patients undergoing elective cardiac surgery. Using permeabilized myofibers prepared from this tissue, mitochondrial respiration analysis revealed a concentration-dependent decrease in ADP-stimulated respiration with DOPAL. Pre-incubation with carnosine, but not GSH or L-Cys, significantly reduced this effect (p < 0.05). Carnosine was also able to block formation of catecholaldehyde protein adducts in isolated human cardiac mitochondria treated with NE. These findings demonstrate the unique reactivity of carnosine towards catecholaldehydes and, therefore, suggest a novel and distinct biological role for histidine dipeptides in this detoxification reaction. The therapeutic potential of carnosine in diseases associated with catecholamine-related toxicity is worthy of further examination.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Aldeídos/metabolismo , Carnosina/farmacologia , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Idoso , Catecóis , Cisteína/farmacologia , Glutationa/farmacologia , Humanos , Pessoa de Meia-Idade , Oxirredução
15.
Environ Toxicol Pharmacol ; 62: 69-78, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29986280

RESUMO

Although neurotoxicity and hepatotoxicity have long been associated with exposure to polychlorinated biphenyls (PCBs), less is known about the selective toxicity of those hydroxylated PCBs (OH-PCBs) and PCB sulfates that are metabolites derived from exposure to PCBs found in indoor air. We have examined the toxicity of OH-PCBs and PCB sulfates derived from PCBs 3, 8, 11, and 52 in two neural cell lines (N27 and SH-SY5Y) and an hepatic cell line (HepG2). With the exception of a similar toxicity seen for N27 cells exposed to either OH-PCB 52 or PCB 52 sulfate, these OH-PCBs were more toxic to all three cell-types than their corresponding PCB or PCB sulfate congeners. Differences in the distribution of individual OH-PCB and PCB sulfate congeners between the cells and media, and the ability of cells to interconvert PCB sulfates and OH-PCBs, were important components of cellular sensitivity to these toxicants.


Assuntos
Poluentes Atmosféricos/toxicidade , Bifenilos Policlorados/toxicidade , Sulfatos/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidroxilação , Ratos
16.
SLAS Discov ; 23(4): 363-374, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29351497

RESUMO

Regulator of G protein signaling (RGS) proteins temporally regulate heterotrimeric G protein signaling cascades elicited by G protein-coupled receptor activation and thus are essential for cell homeostasis. The dysregulation of RGS protein expression has been linked to several pathologies, spurring discovery efforts to identify small-molecule inhibitors of these proteins. Presented here are the results of a high-throughput screening (HTS) campaign targeting RGS17, an RGS protein reported to be inappropriately upregulated in several cancers. A screen of over 60,000 small molecules led to the identification of five hit compounds that inhibit the RGS17-Gαo protein-protein interaction. Chemical and biochemical characterization demonstrated that three of these hits inhibited the interaction through the decomposition of parent compound into reactive products under normal chemical library storage/usage conditions. Compound substructures susceptible to decomposition are reported and the decomposition process characterized, adding to the armamentarium of tools available to the screening field, allowing for the conservation of resources in follow-up efforts and more efficient identification of potentially decomposed compounds. Finally, analogues of one hit compound were tested, and the results establish the first ever structure-activity relationship (SAR) profile for a small-molecule inhibitor of RGS17.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Oncogenes/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Proteínas RGS/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Oncogenes/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas RGS/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
17.
Toxicology ; 394: 93-101, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233657

RESUMO

Polychlorinated biphenyls (PCB) exposure at low chronic levels is a significant public health concern. Animal and epidemiological studies indicate that low PCB body burden may cause neurotoxicity and be a risk factor for neurodegenerative diseases. In the current study, we measured the ability of two non-dioxin like PCBs, 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) and 2,2'3,5',6-pentachlorobiphenyl (PCB95), to alter dopamine (DA) levels and metabolism using the dopaminergic PC12 cell line. Our hypothesis is that treatment of PC12 cells with non-toxic concentrations of PCB153 or PCB95 for 12 and 24 h will have different effects due to different congener structures. Levels of DA and of 3,4-dihydroxyphenylacetaldehyde (DOPAL), 3, 4-dihyroxylphenylethanol (DOPET), and 3,4-dihyroxylphenylacetic acid (DOPAC) metabolite, gene expression of the dopamine synthesis enzyme tyrosine hydroxylase (TH) and the vesicular monoamine transporter (VMAT2), and gene expression of the anti-oxidant enzymes Cu/Zn and Mn superoxide oxidase (Cu/ZnSOD, MnSOD), glutathione peroxidase (GPx) and catalase were determined. PCB153 decreased intracellular and extracellular levels of DA after 12 h exposure and this was consistent with an increase in DA metabolites. After 24 h, the level of DA in medium increased compared to the control. In contrast, PCB95 exposure increased the intracellular DA level and decreased DA in medium consistent with a down-regulation of VMAT2 expression at 12 h. After 24 h exposure, PCB95 increased DA levels in media. Expression of TH mRNA increased slightly following 12 h but not at 24 h exposure. MnSOD mRNA increased up to 6-7 fold and Cu/ZnSOD increased less than two-fold after treatment with both congeners. Catalase expression was up-regulated following 24 h exposure to PCB153 and PCB95, but GPx expression was down-regulated after 12 h exposure to PCB95 only. These results suggest that PCB153 and PCB95 are neurotoxic and affect DA turnover with structure-dependent differences between these two congeners.


Assuntos
Dopamina/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Bifenilos Policlorados/toxicidade , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Masculino , Células PC12 , Ratos
18.
Biochem Biophys Res Commun ; 492(2): 275-281, 2017 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-28830811

RESUMO

BACKGROUND: The aldehyde metabolite of dopamine, 3,4-dihydroxyphenylacetaldehyde (DOPAL) is an endogenous neurotoxin implicated in Parkinson's Disease. Elucidating protein targets of DOPAL is essential in understanding it's pathology. The enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a target of DOPAL. METHODS: GAPDH activity was measured via reduction of NAD+ cofactor (340 nm). Protein aggregation was assessed with SDS-PAGE methods and specific modification via chemical probes. RESULTS: Low micromolar levels of DOPAL caused extensive GAPDH aggregation and irreversibly inhibited enzyme activity. The inactivation of GAPDH was dependent on both the catechol and aldehyde moieties of DOPAL. It is suggested that Cys are modified and oxidized by DOPAL. CONCLUSIONS: The mechanism by which DOPAL modifies GAPDH can serve as a mechanistic explanation to the pathological events in Parkinson's Disease.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Dopamina/metabolismo , Indução Enzimática , Gliceraldeído-3-Fosfato Desidrogenases/química , Humanos , Doença de Parkinson/metabolismo , Agregados Proteicos , Coelhos , Ratos
19.
J Nat Prod ; 80(7): 1992-2000, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621943

RESUMO

Regulator of G Protein Signaling (RGS) 17 is an overexpressed promoter of cancer survival in lung and prostate tumors, the knockdown of which results in decreased tumor cell proliferation in vitro. Identification of drug-like molecules inhibiting this protein could ameliorate the RGS17's pro-tumorigenic effect. Using high-throughput screening, a chemical library containing natural products was interrogated for inhibition of the RGS17-Gαo interaction. Initial hits were verified in control and counter screens. Leads were characterized via biochemical, mass spectrometric, Western blot, microscopic, and cytotoxicity measures. Four known compounds (1-4) were identified with IC50 values ranging from high nanomolar to low micromolar. Three compounds were extensively characterized biologically, demonstrating cellular activity determined by confocal microscopy, and two compounds were assessed via ITC exhibiting high nanomolar to low micromolar dissociation constants. The compounds were found to have a cysteine-dependent mechanism of binding, verified through site-directed mutagenesis and cysteine reactivity assessment. Two compounds, sanguinarine (1) and celastrol (2), were found to be cytostatic against lung and prostate cancer cell lines and cytotoxic against prostate cancer cell lines in vitro, although the dependence of RGS17 on these phenomena remains elusive, a result that is perhaps not surprising given the multimodal cytostatic and cytotoxic activities of many natural products.


Assuntos
Produtos Biológicos/farmacologia , Citostáticos/farmacologia , Citotoxinas/farmacologia , Reguladores de Proteínas de Ligação ao GTP/efeitos dos fármacos , Benzofenantridinas/farmacologia , Produtos Biológicos/química , Citostáticos/química , Citotoxinas/química , Humanos , Isoquinolinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Estrutura Molecular , Triterpenos Pentacíclicos , Neoplasias da Próstata/tratamento farmacológico , Triterpenos/farmacologia
20.
Chem Res Toxicol ; 29(7): 1098-107, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27268734

RESUMO

3,4-Dihydroxyphenylacetaldehyde (DOPAL) is an endogenously produced toxic aldehyde. It is a bifunctional electrophile implicated in the loss of dopaminergic cells concomitant with Parkinson's disease and neurodegeneration. DOPAL is known to react with proteins and amino acids such as N-acetyl lysine (NAL); oxidation of the catechol moiety to the quinone of DOPAL increases this reactivity. Here, we demonstrate the ability of the antioxidants N-acetylcysteine, glutathione, and ascorbic acid to mitigate the reactivity of DOPAL with proteins and amino acids in a dose-dependent fashion. Conversely, Trolox did not lessen the observed reactivity with proteins. Interestingly, use of tricine, a buffer and reducing agent, in these systems also decreased the reactivity of DOPAL with amines, yielding tricine-derived free radical species. Modification of amines with aldehydes typically involves Schiff base chemistry; however, the observance of free radicals suggests that an oxidative step is involved in the reaction of DOPAL with lysine. Furthermore, while Schiff base formation is usually optimal at pH 5, the reaction rate of DOPAL with NAL is negligible at pH 5 and is enhanced under basic conditions (e.g., pH 9). Conditions of high pH are also favorable for catechol auto-oxidation, known to occur for DOPAL. The antioxidant-mediated protection demonstrated here suggests that oxidative stress may impart cellular vulnerability to protein modification by DOPAL. Therefore, depleted antioxidants and increased levels of lipid peroxidation products, known to prevent the detoxifying metabolism of DOPAL, may present a survival challenge to dopaminergic cells targeted in Parkinson's disease.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Antioxidantes/farmacologia , Dopamina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Aminas/metabolismo , Animais , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...