Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 76(3): 659-69, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19948853

RESUMO

Bacillus subtilis is a well-established cell factory for efficient secretion of many biotechnologically relevant enzymes that are naturally produced by it or related organisms. However, the use of B. subtilis as a host for production of heterologous secretory proteins can be complicated by problems related to inefficient translocation of the foreign proteins across the plasma membrane or to inefficient release of the exported proteins from the cell surface into the surrounding medium. Therefore, there is a clear need for tools that allow more efficient membrane targeting, translocation, and release during the production of these proteins. In the present study, we investigated the contributions of the pre (pre(lip)) and pro (pro(lip)) sequences of a Staphylococcus hyicus lipase to secretion of a heterologous protein, the alkaline phosphatase PhoA of Escherichia coli, by B. subtilis. The results indicate that the presence of the pro(lip)-peptide, in combination with the lipase signal peptide (pre(lip)), contributes significantly to the efficient secretion of PhoA by B. subtilis and that pre(lip) directs PhoA secretion more efficiently than the authentic signal peptide of PhoA. Genome-wide transcriptional analyses of the host cell responses indicate that, under the conditions tested, no known secretion or membrane-cell wall stress responses were provoked by the production of PhoA with any of the pre- and pro-region sequences used. Our data underscore the view that the pre-pro signals of the S. hyicus lipase are very useful tools for secretion of heterologous proteins in B. subtilis.


Assuntos
Fosfatase Alcalina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipase/química , Staphylococcus/enzimologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biotecnologia/métodos , Membrana Celular/genética , Membrana Celular/metabolismo , Clonagem Molecular , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/genética , Lipase/genética , Dobramento de Proteína , Sinais Direcionadores de Proteínas/genética , Transporte Proteico/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo , alfa-Amilases/metabolismo
2.
Vis Neurosci ; 24(4): 573-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17705893

RESUMO

The mammalian neural retina contains single or multiple intrinsic circadian oscillators that can be directly entrained by light cycles. Dopaminergic amacrine (DA) cells represent an especially interesting candidate as a site of the retinal oscillator because of the crucial role of dopamine in light adaptation, and the widespread distribution of dopamine receptors in the retina. We hereby show by single-cell, end-point RT-PCR that retinal DA cells contain the transcripts for six core components of the circadian clock: Bmal1, Clock, Cry1, Cry2, Per1, and Per2. Rod photoreceptors represented a negative control, because they did not appear to contain clock transcripts. We finally confirmed that DA cells contain the protein encoded by the Bmal1 gene by comparing immunostaining of the nuclei of DA cells in the retinas of wildtype and Bmal1-/- mice. It is therefore likely that DA cells contain a circadian clock that anticipates predictable variations in retinal illumination.


Assuntos
Ritmo Circadiano/genética , Dopamina/fisiologia , Retina/citologia , Retina/fisiologia , Animais , Eletroforese em Gel de Ágar , Humanos , Imuno-Histoquímica , Íntrons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Mol Microbiol ; 64(4): 984-99, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17501922

RESUMO

Disulphide bond formation catalysed by thiol-disulphide oxidoreductases (TDORs) is a universally conserved mechanism for stabilizing extracytoplasmic proteins. In Escherichia coli, disulphide bond formation requires a concerted action of distinct TDORs in thiol oxidation and subsequent quinone reduction. TDOR function in other bacteria has remained largely unexplored. Here we focus on TDORs of low-GC Gram-positive bacteria, in particular DsbA of Staphylococcus aureus and BdbA-D of Bacillus subtilis. Phylogenetic analyses reveal that the homologues DsbA and BdbD cluster in distinct groups typical for Staphylococcus and Bacillus species respectively. To compare the function of these TDORs, DsbA was produced in various bdb mutants of B. subtilis. Next, we assessed the ability of DsbA to sustain different TDOR-dependent processes, including heterologous secretion of E. coli PhoA, competence development and bacteriocin (sublancin 168) production. The results show that DsbA can function in all three processes. While BdbD needs a quinone oxidoreductase for activity, DsbA activity appears to depend on redox-active medium components. Unexpectedly, both quinone oxidoreductases of B. subtilis are sufficient to sustain production of sublancin. Moreover, DsbA can functionally replace these quinone oxidoreductases in sublancin production. Taken together, our unprecedented findings imply that TDOR systems of low-GC Gram-positive bacteria have a modular composition.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteína Dissulfeto Redutase (Glutationa)/genética , Isomerases de Dissulfetos de Proteínas/genética , Staphylococcus aureus/enzimologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Teste de Complementação Genética , Glicopeptídeos , Família Multigênica , Peptídeos/metabolismo , Filogenia , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/metabolismo
4.
Appl Environ Microbiol ; 72(11): 6876-85, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17088376

RESUMO

The gram-positive bacterium Bacillus subtilis secretes high levels of proteins into its environment. Most of these secretory proteins are exported from the cytoplasm in an unfolded state and have to fold efficiently after membrane translocation. As previously shown for alpha-amylases of Bacillus species, inefficient posttranslocational protein folding is potentially detrimental and stressful. In B. subtilis, this so-called secretion stress is sensed and combated by the CssRS two-component system. Two known members of the CssRS regulon are the htrA and htrB genes, encoding potential extracytoplasmic chaperone proteases for protein quality control. In the present study, we investigated whether high-level production of a secretory protein with two disulfide bonds, PhoA of Escherichia coli, induces secretion stress in B. subtilis. Our results show that E. coli PhoA production triggers a relatively moderate CssRS-dependent secretion stress response in B. subtilis. The intensity of this response is significantly increased in the absence of BdbC, which is a major determinant for posttranslocational folding of disulfide bond-containing proteins in B. subtilis. Our findings show that BdbC is required to limit the PhoA-induced secretion stress. This conclusion focuses interest on the BdbC-dependent folding pathway for biotechnological production of proteins with disulfide bonds in B. subtilis and related bacilli.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Resposta ao Choque Térmico , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Fosfatase Alcalina/química , Fosfatase Alcalina/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Biotecnologia/métodos , Proteínas de Escherichia coli , Mutação , Dobramento de Proteína , Proteômica , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
5.
Microbiol Mol Biol Rev ; 68(2): 207-33, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15187182

RESUMO

Secretory proteins perform a variety of important "remote-control" functions for bacterial survival in the environment. The availability of complete genome sequences has allowed us to make predictions about the composition of bacterial machinery for protein secretion as well as the extracellular complement of bacterial proteomes. Recently, the power of proteomics was successfully employed to evaluate genome-based models of these so-called secretomes. Progress in this field is well illustrated by the proteomic analysis of protein secretion by the gram-positive bacterium Bacillus subtilis, for which approximately 90 extracellular proteins were identified. Analysis of these proteins disclosed various "secrets of the secretome," such as the residence of cytoplasmic and predicted cell envelope proteins in the extracellular proteome. This showed that genome-based predictions reflect only approximately 50% of the actual composition of the extracellular proteome of B. subtilis. Importantly, proteomics allowed the first verification of the impact of individual secretion machinery components on the total flow of proteins from the cytoplasm to the extracellular environment. In conclusion, proteomics has yielded a variety of novel leads for the analysis of protein traffic in B. subtilis and other gram-positive bacteria. Ultimately, such leads will serve to increase our understanding of virulence factor biogenesis in gram-positive pathogens, which is likely to be of high medical relevance.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteômica/métodos , Bacillus subtilis/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Genoma Bacteriano , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Sinais Direcionadores de Proteínas/genética , Transporte Proteico
6.
Mol Biol Evol ; 20(12): 2076-90, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12949151

RESUMO

Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing ecological niches. Notably, approximately 47% of the approximately 4,100 genes of B. subtilis belong to paralogous gene families in which several members have overlapping functions. Thus, essential gene functions will outnumber essential genes. To answer the question to what extent the most recently acquired DNA contributes to the life of B. subtilis under standard laboratory growth conditions, we initiated a "reconstruction" of the B. subtilis genome by removing prophages and AT-rich islands. Stepwise deletion of two prophages (SPbeta, PBSX), three prophage-like regions, and the largest operon of B. subtilis (pks) resulted in a genome reduction of 7.7% and elimination of 332 genes. The resulting strain was phenotypically characterized by metabolic flux analysis, proteomics, and specific assays for protein secretion, competence development, sporulation, and cell motility. We show that genome engineering is a feasible strategy for functional analysis of large gene clusters, and that removal of dispensable genomic regions may pave the way toward an optimized Bacillus cell factory.


Assuntos
Bacillus subtilis/genética , Evolução Molecular , Engenharia Genética/métodos , Genoma Bacteriano , Fagos Bacilares/genética , Fagos Bacilares/crescimento & desenvolvimento , Bacillus subtilis/crescimento & desenvolvimento , Cromossomos Bacterianos , Meios de Cultura , Escherichia coli/genética , Deleção de Genes , Mapeamento Físico do Cromossomo , Plasmídeos , Esporos Bacterianos/genética
7.
J Biol Chem ; 277(19): 16682-8, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11872755

RESUMO

Thiol-disulfide oxidoreductases are required for disulfide bond formation in proteins that are exported from the cytoplasm. Four enzymes of this type, termed BdbA, BdbB, BdbC, and BdbD, have been identified in the Gram-positive eubacterium Bacillus subtilis. BdbC and BdbD have been shown to be critical for the folding of a protein required for DNA uptake during natural competence. In contrast, no function has been assigned so far to the BdbA and BdbB proteins. The bdbA and bdbB genes are located in one operon that also contains the genes specifying the lantibiotic sublancin 168 and the ATP-binding cassette transporter SunT. Interestingly sublancin 168 contains two disulfide bonds. The present studies demonstrate that SunT and BdbB, but not BdbA, are required for the production of active sublancin 168. In addition, the BdbB paralogue BdbC is at least partly able to replace BdbB in sublancin 168 production. These observations show the unprecedented involvement of thiol-disulfide oxidoreductases in the synthesis of a peptide antibiotic. Notably BdbB cannot complement BdbC in competence development, showing that these two closely related thiol-disulfide oxidoreductases have different, but partly overlapping, substrate specificities.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias , Peptídeos , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/química , Bacillus subtilis/enzimologia , Bacteriocinas , Sequência de Bases , Membrana Celular/metabolismo , Citoplasma/enzimologia , DNA/metabolismo , Dissulfetos , Glicopeptídeos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
8.
J Biol Chem ; 277(9): 6994-7001, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11744713

RESUMO

The development of genetic competence in the Gram-positive eubacterium Bacillus subtilis is a complex postexponential process. Here we describe a new bicistronic operon, bdbDC, required for competence development, which was identified by the B. subtilis Systematic Gene Function Analysis program. Inactivation of either the bdbC or bdbD genes of this operon results in the loss of transformability without affecting recombination or the synthesis of ComK, the competence transcription factor. BdbC and BdbD are orthologs of enzymes known to be involved in extracytoplasmic disulfide bond formation. Consistent with this, BdbC and BdbD are needed for the secretion of the Escherichia coli disulfide bond-containing alkaline phosphatase, PhoA, by B. subtilis. Similarly, the amount of the disulfide bond-containing competence protein ComGC is severely reduced in bdbC or bdbD mutants. In contrast, the amounts of the competence proteins ComGA and ComEA remain unaffected by bdbDC mutations. Taken together, these observations imply that in the absence of either BdbC or BdbD, ComGC is unstable and that BdbC and BdbD catalyze the formation of disulfide bonds that are essential for the DNA binding and uptake machinery.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Óperon , Proteína Dissulfeto Redutase (Glutationa)/química , Proteína Dissulfeto Redutase (Glutationa)/fisiologia , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Western Blotting , Quinases Ciclina-Dependentes/metabolismo , DNA/metabolismo , Dimerização , Dissulfetos , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Teste de Complementação Genética , Mitomicina/farmacologia , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Proteína Dissulfeto Redutase (Glutationa)/genética , Recombinação Genética , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA