Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 17(1): 190-202, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17479845

RESUMO

This study aims to reveal whether complexity, namely, community and trophic structure, of chronically stressed soil systems is at increased risk or remains stable when confronted with a subsequent disturbance. Therefore, we focused on a grassland with a history of four centuries of patchy contamination. Nematodes were used as model organisms because they are an abundant and trophically diverse group and representative of the soil food web and ecosystem complexity. In a field survey, a relationship between contaminants and community structures was established. Following, two groups of soil mesocosms from the field that differed in contamination level were exposed to different disturbance regimes, namely, to the contaminant zinc and a heat shock. The zinc treatment revealed that community structure is stable, irrespective of soil contamination levels. This implies that centuries of exposure to contamination led to adaptation of the soil nematode community irrespective of the patchy distribution of contaminants. In contrast, the heat shock had adverse effects on species richness in the highly contaminated soils only. The total nematode biomass was lower in the highly contaminated field samples; however, the biomass was not affected by zinc and heat treatments of the mesocosms. This means that density compensation occurred rapidly, i.e., tolerant species quickly replaced sensitive species. Our results support the hypothesis that the history of contamination and the type of disturbance determine the response of communities. Despite that ecosystems may be exposed for centuries to contamination and communities show adaptation, biodiversity in highly contaminated sites is at increased risk when exposed to a different disturbance regime. We discuss how the loss of higher trophic levels from the entire system, such as represented by carnivorous nematodes after the heat shock, accompanied by local biodiversity loss at highly contaminated sites, may result in detrimental effects on ecosystem functions.


Assuntos
Ecologia , Animais , Funções Verossimilhança , Nematoides , Solo/parasitologia
2.
Heredity (Edinb) ; 98(4): 206-13, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17203010

RESUMO

Empirical evidence is mounting to suggesting that genetic correlations between life-history traits are environment specific. However, detailed knowledge about the loci underlying genetic correlations in different environments is scant. Here, we studied the influence of temperature (12 degrees C and 24 degrees C) on the genetic correlations between egg size, egg number and body mass in the nematode Caenorhabditis elegans. We used a quantitative trait loci (QTL) approach based on a genetic map with evenly spaced single nucleotide polymorphism markers in an N2 x CB4856 recombinant inbred panel. Significant genetic correlations between various traits were found at both temperatures. We detected pleiotropic or closely linked QTL, which supported the negative correlation between egg size and egg number at 12 degrees C, the positive correlation across temperatures for body mass, and the positive correlation between body mass and egg size at 12 degrees C. The results indicate that specific loci control the covariation in these life-history traits and the locus control is prone to environmental conditions.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Animais , Mapeamento Cromossômico , Meio Ambiente , Feminino , Homozigoto , Masculino , Oviposição , Óvulo/citologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...