Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Oncol ; 19(1): 71, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849900

RESUMO

BACKGROUND: Particle therapy makes a noteworthy contribution in the treatment of tumor diseases. In order to be able to irradiate from different angles, usually expensive, complex and large gantries are used. Instead rotating the beam via a gantry, the patient itself might be rotated. Here we present tolerance and compliance of volunteers for a fully-enclosed patient rotation system in a clinical magnetic resonance (MR)-scanner for potential use in MR-guided radiotherapy, conducted within a prospective evaluation study. METHODS: A patient rotation system was used to simulate and perform magnetic resonance imaging (MRI)-examinations with 50 volunteers without an oncological question. For 20 participants, the MR-examination within the bore was simulated by introducing realistic MRI noise, whereas 30 participants received an examination with image acquisition. Initially, body parameters and claustrophobia were assessed. The subjects were then rotated to different angles for simulation (0°, 45°, 90°, 180°) and imaging (0°, 70°, 90°, 110°). At each angle, anxiety and motion sickness were assessed using a 6-item State-Trait-Anxiety-Inventory (STAI-6) and a modified Motion Sickness Assessment Questionnaire (MSAQ). In addition, general areas of discomfort were evaluated. RESULTS: Out of 50 subjects, three (6%) subjects terminated the study prematurely. One subject dropped out during simulation due to nausea while rotating to 45°. During imaging, further two subjects dropped out due to shoulder pain from positioning at 90° and 110°, respectively. The average result for claustrophobia (0 = no claustrophobia to 4 = extreme claustrophobia) was none to light claustrophobia (average score: simulation 0.64 ± 0.33, imaging 0.51 ± 0.39). The mean anxiety scores (0% = no anxiety to 100% = maximal anxiety) were 11.04% (simulation) and 15.82% (imaging). Mean motion sickness scores (0% = no motion sickness to 100% = maximal motion sickness) of 3.5% (simulation) and 6.76% (imaging) were obtained across all participants. CONCLUSION: Our study proves the feasibility of horizontal rotation in a fully-enclosed rotation system within an MR-scanner. Anxiety scores were low and motion sickness was only a minor influence. Both anxiety and motion sickness showed no angular dependency. Further optimizations with regard to immobilization in the rotation device may increase subject comfort.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia Guiada por Imagem , Humanos , Estudos Prospectivos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Rotação , Radioterapia Guiada por Imagem/métodos , Pessoa de Meia-Idade , Adulto Jovem , Enjoo devido ao Movimento/etiologia , Cooperação do Paciente , Ansiedade/etiologia , Voluntários Saudáveis
2.
Phys Med Biol ; 69(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38330494

RESUMO

Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.


Assuntos
Polímeros , Radioterapia Conformacional , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Radiometria/métodos
3.
Phys Imaging Radiat Oncol ; 28: 100497, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869476

RESUMO

Background and purpose: Magnetic Resonance Imaging (MRI) is widely used in oncology for tumor staging, treatment response assessment, and radiation therapy (RT) planning. This study proposes a framework for automatic optimization of MRI sequences based on pulse sequence parameter sets (SPS) that are directly applied on the scanner, for application in RT planning. Materials and methods: A phantom with seven in-house fabricated contrasts was used for measurements. The proposed framework employed a derivative-free optimization algorithm to repeatedly update and execute a parametrized sequence on the MR scanner to acquire new data. In each iteration, the mean-square error was calculated based on the clinical application. Two clinically relevant optimization goals were pursued: achieving the same signal and therefore contrast as in a target image, and maximizing the signal difference (contrast) between specified tissue types. The framework was evaluated using two optimization methods: a covariance matrix adaptation evolution strategy (CMA-ES) and a genetic algorithm (GA). Results: The obtained results demonstrated the potential of the proposed framework for automatic optimization of MRI sequences. Both CMA-ES and GA methods showed promising results in achieving the two optimization goals, however, CMA-ES converged much faster as compared to GA. Conclusions: The proposed framework enables for automatic optimization of MRI sequences based on SPS that are directly applied on the scanner and it may be used to enhance the quality of MRI images for dedicated applications in MR-guided RT.

4.
Z Med Phys ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150727

RESUMO

PURPOSE: To describe performance measurements, adaptations and time stability over 20 months of a diagnostic MR scanner for integration into MR-guided photon and particle radiotherapy. MATERIAL AND METHODS: For realization of MR-guided photon and particle therapy (MRgRT/MRgPT), a 1.5 T MR scanner was installed at the Heidelberg Ion Beam Therapy Center. To integrate MRI into the treatment process, a flat tabletop and dedicated coil holders for flex coils were used, which prevent deformation of the patient external contour and allow for the use of immobilization tools for reproducible positioning. The signal-to-noise ratio (SNR) was compared for the diagnostic and therapy-specific setup using the flat couch top and flexible coils for the a) head & neck and b) abdominal region as well as for different bandwidths and clinical pulse sequences. Additionally, a quality assurance (QA) protocol with monthly measurements of the ACR phantom and measurement of geometric distortions for a large field-of-view (FOV) was implemented to assess the imaging quality parameters of the device over the course of 20 months. RESULTS: The SNR measurements showed a decreased SNR for the RT-specific as compared to the diagnostic setup of (a) 26% to 34% and (b) 11% to 33%. No significant bandwidth dependency for this ratio was found. The longitudinal assessment of the image quality parameters with the ACR and distortion phantom confirmed the long-term stability of the MRI device. CONCLUSION: A diagnostic MRI was commissioned for use in MR-guided particle therapy. Using a radiotherapy specific setup, a high geometric accuracy and signal homogeneity was obtained after some adaptions and the measured parameters were shown to be stable over a period of 20 months.

5.
Phys Med Biol ; 67(4)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35081516

RESUMO

Purpose. Improvements in image-guided radiotherapy (IGRT) enable accurate and precise treatment of moving tumors in the abdomen while simultaneously sparing healthy tissue. However, the lack of validation tools for newly developed MR-guided radiotherapy hybrid devices such as the MR-Linac is an open issue. This study presents a custom developed abdominal phantom with respiratory organ motion and multimodal imaging contrast to perform end-to-end tests for IGRT treatment planning scenarios.Methods. The abdominal phantom contains deformable and anatomically shaped liver and kidney models made of Ni-DTPA and KCl-doped agarose mixtures that can be reproducibly positioned within the phantom. Organ models are wrapped in foil to avoid ion exchange with the surrounding agarose and to provide stable T1 and T2 relaxation times as well as HU numbers. Breathing motion is realized by a diaphragm connected to an actuator that is hydraulically controlled via a programmable logic controller. With this system, artificial and patient-specific breathing patterns can be carried out. In 1.5 T magnetic resonance imaging (MRI), diaphragm, liver and kidney motion was measured and compared to the breathing motion of a healthy male volunteer for different breathing amplitudes including shallow, normal and deep breathing.Results. The constructed abdominal phantom demonstrated organ-equivalent intensity values in CT as well as in MRI. T1-weighted (T1w) and T2-weighted (T2w) relaxation times for 1.5 T and CT numbers were 552.9 ms, 48.2 ms and 48.8 HU (liver) as well as 950.42 ms, 79 ms and 28.2 HU (kidney), respectively. These values were stable for more than six months. Extracted breathing motion from a healthy volunteer revealed a liver to diaphragm motion ratio (LDMR) of 64.4% and a kidney to diaphragm motion ratio (KDMR) of 30.7%. Well-comparable values were obtained for the phantom (LDMR: 65.5%, KDMR: 27.5%).Conclusions. The abdominal phantom demonstrated anthropomorphic T1 and T2 relaxation times as well as HU numbers and physiological motion pattern in MRI and CT. This allows for wide use in the validation of IGRT including MRgRT.


Assuntos
Movimentos dos Órgãos , Radioterapia Guiada por Imagem , Abdome/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Movimento (Física) , Imagem Multimodal , Imagens de Fantasmas , Sefarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...