Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(2): 801-815, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000390

RESUMO

Although ubiquitylation had traditionally been considered limited to proteins, the discovery of non-proteinaceous substrates (e.g. lipopolysaccharides and adenosine diphosphate ribose (ADPr)) challenged this perspective. Our recent study showed that DTX2 E3 ligase efficiently ubiquitylates ADPr. Here, we show that the ADPr ubiquitylation activity is also present in another DELTEX family member, DTX3L, analysed both as an isolated catalytic fragment and the full-length PARP9:DTX3L complex, suggesting that it is a general feature of the DELTEX family. Since structural predictions show that DTX3L possesses single-stranded nucleic acids binding ability and given the fact that nucleic acids have recently emerged as substrates for ADP-ribosylation, we asked whether DELTEX E3s might catalyse ubiquitylation of an ADPr moiety linked to nucleic acids. Indeed, we show that DTX3L and DTX2 are capable of ubiquitylating ADP-ribosylated DNA and RNA synthesized by PARPs, including PARP14. Furthermore, we demonstrate that the Ub-ADPr-nucleic acids conjugate can be reversed by two groups of hydrolases, which remove either the whole adduct (e.g. SARS-CoV-2 Mac1 or PARP14 macrodomain 1) or just the Ub (e.g. SARS-CoV-2 PLpro). Overall, this study reveals ADPr ubiquitylation as a general function of the DELTEX family E3s and presents the evidence of reversible ubiquitylation of ADP-ribosylated nucleic acids.


Assuntos
ADP-Ribosilação , Ácidos Nucleicos , Ubiquitina-Proteína Ligases , Adenosina Difosfato Ribose/metabolismo , Ácidos Nucleicos/metabolismo , Ácido Okadáico/análogos & derivados , Proteínas/genética , Ubiquitina-Proteína Ligases/metabolismo , Humanos
2.
Chembiochem ; 22(12): 2107-2110, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838082

RESUMO

PARP14 is an interferon-stimulated gene that is overexpressed in multiple tumor types, influencing pro-tumor macrophage polarization as well as suppressing the antitumor inflammation response by modulating IFN-γ and IL-4 signaling. PARP14 is a 203 kDa protein that possesses a catalytic domain responsible for the transfer of mono-ADP-ribose to its substrates. PARP14 also contains three macrodomains and a WWE domain which are binding modules for mono-ADP-ribose and poly-ADP-ribose, respectively, in addition to two RNA recognition motifs. Catalytic inhibitors of PARP14 have been shown to reverse IL-4 driven pro-tumor gene expression in macrophages, however it is not clear what roles the non-enzymatic biomolecular recognition motifs play in PARP14-driven immunology and inflammation. To further understand this, we have discovered a heterobifunctional small molecule designed based on a catalytic inhibitor of PARP14 that binds in the enzyme's NAD+ -binding site and recruits cereblon to ubiquitinate it and selectively target it for degradation.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
3.
Nucleic Acids Res ; 47(7): 3765-3783, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30759237

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas proteins provide an immune-like response in many prokaryotes against extraneous nucleic acids. CRISPR-Cas systems are classified into different classes and types. Class 1 CRISPR-Cas systems form multi-protein effector complexes that includes a guide RNA (crRNA) used to identify the target for destruction. Here we present crystal structures of Staphylococcus epidermidis Type III-A CRISPR subunits Csm2 and Csm3 and a 5.2 Å resolution single-particle cryo-electron microscopy (cryo-EM) reconstruction of an in vivo assembled effector subcomplex including the crRNA. The structures help to clarify the quaternary architecture of Type III-A effector complexes, and provide details on crRNA binding, target RNA binding and cleavage, and intermolecular interactions essential for effector complex assembly. The structures allow a better understanding of the organization of Type III-A CRISPR effector complexes as well as highlighting the overall similarities and differences with other Class 1 effector complexes.


Assuntos
Proteínas Associadas a CRISPR/ultraestrutura , Conformação Proteica , Staphylococcus epidermidis/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , RNA Bacteriano/química , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , Staphylococcus epidermidis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...