Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Oncol ; 13: 1152458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397366

RESUMO

Background: Metastatic disease lacks effective treatments and remains the primary cause of mortality from epithelial cancers, especially breast cancer. The metastatic cascade involves cancer cell migration and invasion and modulation of the tumor microenvironment (TME). A viable anti-metastasis strategy is to simultaneously target the migration of cancer cells and the tumor-infiltrating immunosuppressive inflammatory cells such as activated macrophages, neutrophils, and myeloid-derived suppressor cells (MDSC). The Rho GTPases Rac and Cdc42 are ideal molecular targets that regulate both cancer cell and immune cell migration, as well as their crosstalk signaling at the TME. Therefore, we tested the hypothesis that Rac and Cdc42 inhibitors target immunosuppressive immune cells, in addition to cancer cells. Our published data demonstrate that the Vav/Rac inhibitor EHop-016 and the Rac/Cdc42 guanine nucleotide association inhibitor MBQ-167 reduce mammary tumor growth and prevent breast cancer metastasis from pre-clinical mouse models without toxic effects. Methods: The potential of Rac/Cdc42 inhibitors EHop-016 and MBQ-167 to target macrophages was tested in human and mouse macrophage cell lines via activity assays, MTT assays, wound healing, ELISA assays, and phagocytosis assays. Immunofluorescence, immunohistochemistry, and flow cytometry were used to identify myeloid cell subsets from tumors and spleens of mice following EHop-016 or MBQ-167 treatment. Results: EHop-016 and MBQ-167 inhibited Rac and Cdc42 activation, actin cytoskeletal extensions, migration, and phagocytosis without affecting macrophage cell viability. Rac/Cdc42 inhibitors also reduced tumor- infiltrating macrophages and neutrophils in tumors of mice treated with EHop-016, and macrophages and MDSCs from spleens and tumors of mice with breast cancer, including activated macrophages and monocytes, following MBQ-167 treatment. Mice with breast tumors treated with EHop-016 significantly decreased the proinflammatory cytokine Interleukin-6 (IL-6) from plasma and the TME. This was confirmed from splenocytes treated with lipopolysaccharide (LPS) where EHop-016 or MBQ-167 reduced IL-6 secretion in response to LPS. Conclusion: Rac/Cdc42 inhibition induces an antitumor environment via inhibition of both metastatic cancer cells and immunosuppressive myeloid cells in the TME.

3.
Front Oncol ; 13: 1145724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035195

RESUMO

Among the different immune cells present within tumors, B cells also infiltrate human papillomavirus-positive (HPV+) oropharyngeal tumors. However, the role of B cells during programmed death-1 (PD-1) blockade in HPV+ oropharyngeal cancer needs to be better defined. By using the preclinical mouse model for HPV+ oropharyngeal cancer (named mEER), we characterized B cells within tumors and determined their functional role in vivo during PD-1 blockade. We determined that treatment naïve tongue-implanted tumors, which we have previously demonstrated to be sensitive to PD-1 blockade, contained high infiltration of CD8+ T cells and low infiltration of B cells whereas flank-implanted tumors, which are resistant to PD-1 blockade, contain a higher frequency of B cells compared to T cells. Moreover, B cell-deficient mice (µMt) and B cell-depleted mice showed a slower tumor growth rate compared to wild-type (WT) mice, and B cell deficiency increased CD8+ T cell infiltration in tumors. When we compared tongue tumor-bearing mice treated with anti-PD-1, we observed that tumors that responded to the therapy contained more T cells and B cells than the ones that did not respond. However, µMt mice treated with PD-1 blockade showed similar tumor growth rates to WT mice. Our data suggest that in untreated mice, B cells have a more pro-tumorigenic phenotype potentially affecting T cell infiltration in the tumors. In contrast, B cells are dispensable for PD-1 blockade efficacy. Mechanistic studies are needed to identify novel targets to promote the anti-tumorigenic function and/or suppress the immunosuppressive function of B cells in HPV+ oropharyngeal cancer.

4.
Microbiol Spectr ; 9(3): e0191021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937173

RESUMO

Due to their phylogenetic proximity to humans, nonhuman primates (NHPs) are considered an adequate choice for a basic and preclinical model of sepsis. Gram-negative bacteria are the primary causative of sepsis. During infection, bacteria continuously release the potent toxin lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to death. Our previous research has demonstrated in vitro and in vivo using a mouse model of septic shock that Fh15, a recombinant variant of the Fasciola hepatica fatty acid binding protein, acts as an antagonist of Toll-like receptor 4 (TLR4) suppressing the LPS-induced proinflammatory cytokine storm. The present communication is a proof-of concept study aimed to demonstrate that a low-dose of Fh15 suppresses the cytokine storm and other inflammatory markers during the early phase of sepsis induced in rhesus macaques by intravenous (i.v.) infusion with lethal doses of live Escherichia coli. Fh15 was administered as an isotonic infusion 30 min prior to the bacterial infusion. Among the novel findings reported in this communication, Fh15 (i) significantly prevented bacteremia, suppressed LPS levels in plasma, and the production of C-reactive protein and procalcitonin, which are key signatures of inflammation and bacterial infection, respectively; (ii) reduced the production of proinflammatory cytokines; and (iii) increased innate immune cell populations in blood, which suggests a role in promoting a prolonged steady state in rhesus macaques even in the presence of inflammatory stimuli. This report is the first to demonstrate that a F. hepatica-derived molecule possesses potential as an anti-inflammatory drug against sepsis in an NHP model. IMPORTANCE Sepsis caused by Gram-negative bacteria affects 1.7 million adults annually in the United States and is one of the most important causes of death at intensive care units. Although the effective use of antibiotics has resulted in improved prognosis of sepsis, the pathological and deathly effects have been attributed to the persistent inflammatory cascade. There is a present need to develop anti-inflammatory agents that can suppress or neutralize the inflammatory responses and prevent the lethal consequences of sepsis. We demonstrated here that a small molecule of 14.5 kDa can suppress the bacteremia, endotoxemia, and many other inflammatory markers in an acute Gram-negative sepsis rhesus macaque model. These results reinforce the notion that Fh15 constitutes an excellent candidate for drug development against sepsis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Bacteriemia/tratamento farmacológico , Fasciola hepatica/metabolismo , Proteínas de Ligação a Ácido Graxo/administração & dosagem , Bactérias Gram-Negativas/fisiologia , Proteínas de Helminto/administração & dosagem , Animais , Anti-Inflamatórios/metabolismo , Bacteriemia/genética , Bacteriemia/imunologia , Bacteriemia/microbiologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Fasciola hepatica/química , Fasciola hepatica/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Humanos , Macaca mulatta , Masculino , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31080694

RESUMO

OBJECTIVE: Amyloid deposition is linked to multiple human ailments, including neurodegenerative diseases, type 2 diabetes, and systemic amyloidosis. The assembly of misfolded proteins into amyloid fibrils involves an intermediate form, i.e., soluble amyloid precursor (AP), which exerts cytotoxic function. Insoluble amyloid also stimulates innate immune cells to elicit cytokine response and inflammation. How any of these misfolded proteins are controlled by the host remains obscure. Serum amyloid-P component (SAP) is a universal constituent of amyloid deposits. Short-chain pentraxins, which include both SAP and C-reactive protein (CRP), are pattern recognition molecules that bind to diverse ligands and promote the clearance of microbes and cell debris. Whether these pentraxins interact with AP and cofactor-containing amyloid and subsequently impact their function is not known. METHODS AND RESULTS: To detect the interaction between SAP and different types of amyloids, we performed dot blot analysis. The results showed that SAP invariably bound to protein-only, nucleic acid-containing and glycosaminoglycan-containing amyloid fibrils. This interaction required the presence of calcium. By ELISA, both SAP and CRP bound to soluble AP in the absence of divalent cations. Further characterization, by gel filtration, implied that SAP decamer may recognize AP whereas aggregated SAP preferentially associates with amyloid fibril. Although SAP binding did not affect cytotoxic function of AP, SAP potently inhibited the production of interferon-α from human plasmacytoid dendritic cells triggered by DNA-containing amyloid. CONCLUSIONS: Our data suggest that short pentraxins differentially interact with various forms of misfolded proteins and, in particular, modulate the ability of nucleic acid-containing amyloid to stimulate aberrant type I interferon response. Hence, pentraxins may function as key players in modulating the pathogenesis of protein misfolding diseases as well as interferon-mediated autoimmune manifestation.

6.
J Vis Exp ; (82): 50869, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24335677

RESUMO

Proteins carry out crucial tasks in organisms by exerting functions elicited from their specific three dimensional folds. Although the native structures of polypeptides fulfill many purposes, it is now recognized that most proteins can adopt an alternative assembly of beta-sheet rich amyloid. Insoluble amyloid fibrils are initially associated with multiple human ailments, but they are increasingly shown as functional players participating in various important cellular processes. In addition, amyloid deposited in patient tissues contains nonproteinaceous components, such as nucleic acids and glycosaminoglycans (GAGs). These cofactors can facilitate the formation of amyloid, resulting in the generation of different types of insoluble precipitates. By taking advantage of our understanding how proteins misfold via an intermediate stage of soluble amyloid precursor, we have devised a method to convert native proteins to amyloid fibrils in vitro. This approach allows one to prepare amyloid in large quantities, examine the properties of amyloid generated from specific proteins, and evaluate the structural changes accompanying the conversion.


Assuntos
Amiloide/química , Proteínas/química , Animais , DNA/química , Humanos , Masculino , Estrutura Secundária de Proteína , Salmão , Albumina Sérica/química , Espermatozoides/química
7.
Nat Med ; 19(4): 465-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23455713

RESUMO

To understand why cancer vaccine-induced T cells often do not eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freund's adjuvant (peptide/IFA), which is commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8(+) T cells, which accumulated not in tumors but rather at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, interferon-γ (IFN-γ)- and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination. Provision of CD40-specific antibody, Toll-like receptor 7 (TLR7) agonist and interleukin-2 (IL-2) reduced T cell apoptosis but did not prevent vaccination-site sequestration. A nonpersisting vaccine formulation shifted T cell localization toward tumors, inducing superior antitumor activity while reducing systemic T cell dysfunction and promoting memory formation. These data show that persisting vaccine depots can induce specific T cell sequestration, dysfunction and deletion at vaccination sites; short-lived formulations may overcome these limitations and result in greater therapeutic efficacy of peptide-based cancer vaccines.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/farmacologia , Melanoma Experimental/imunologia , Animais , Apresentação de Antígeno/imunologia , Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Proteína Ligante Fas/fisiologia , Feminino , Interferon gama/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...