Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Neuron ; 47(3): 339-52, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16055059

RESUMO

Absence of functional FMRP causes Fragile X syndrome. Abnormalities in synaptic processes in the cerebral cortex and hippocampus contribute to cognitive deficits in Fragile X patients. So far, the potential roles of cerebellar deficits have not been investigated. Here, we demonstrate that both global and Purkinje cell-specific knockouts of Fmr1 show deficits in classical delay eye-blink conditioning in that the percentage of conditioned responses as well as their peak amplitude and peak velocity are reduced. Purkinje cells of these mice show elongated spines and enhanced LTD induction at the parallel fiber synapses that innervate these spines. Moreover, Fragile X patients display the same cerebellar deficits in eye-blink conditioning as the mutant mice. These data indicate that a lack of FMRP leads to cerebellar deficits at both the cellular and behavioral levels and raise the possibility that cerebellar dysfunctions can contribute to motor learning deficits in Fragile X patients.


Assuntos
Cerebelo/fisiopatologia , Condicionamento Palpebral , Síndrome do Cromossomo X Frágil/fisiopatologia , Deleção de Genes , Depressão Sináptica de Longo Prazo , Proteínas do Tecido Nervoso/genética , Células de Purkinje/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Dendritos/ultraestrutura , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Modelos Neurológicos , Fibras Nervosas , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/ultraestrutura , Proteínas de Ligação a RNA/metabolismo , Reflexo de Sobressalto
2.
Science ; 301(5640): 1736-9, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-14500987

RESUMO

Mammals can be trained to make a conditioned movement at a precise time, which is correlated to the interval between the conditioned stimulus and unconditioned stimulus during the learning. This learning-dependent timing has been shown to depend on an intact cerebellar cortex, but which cellular process is responsible for this form of learning remains to be demonstrated. Here, we show that protein kinase C-dependent long-term depression in Purkinje cells is necessary for learning-dependent timing of Pavlovian-conditioned eyeblink responses.


Assuntos
Piscadela , Cerebelo/fisiologia , Condicionamento Palpebral , Aprendizagem , Depressão Sináptica de Longo Prazo , Células de Purkinje/fisiologia , Animais , Eletrochoque , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , N-Metilaspartato/farmacologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Fatores de Tempo
3.
EMBO J ; 20(15): 4041-54, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11483508

RESUMO

Genetic analysis in Drosophila suggests that Bicaudal-D functions in an essential microtubule-based transport pathway, together with cytoplasmic dynein and dynactin. However, the molecular mechanism underlying interactions of these proteins has remained elusive. We show here that a mammalian homologue of Bicaudal-D, BICD2, binds to the dynamitin subunit of dynactin. This interaction is confirmed by mass spectrometry, immunoprecipitation studies and in vitro binding assays. In interphase cells, BICD2 mainly localizes to the Golgi complex and has properties of a peripheral coat protein, yet it also co-localizes with dynactin at microtubule plus ends. Overexpression studies using green fluorescent protein-tagged forms of BICD2 verify its intracellular distribution and co-localization with dynactin, and indicate that the C-terminus of BICD2 is responsible for Golgi targeting. Overexpression of the N-terminal domain of BICD2 disrupts minus-end-directed organelle distribution and this portion of BICD2 co-precipitates with cytoplasmic dynein. Nocodazole treatment of cells results in an extensive BICD2-dynactin-dynein co-localization. Taken together, these data suggest that mammalian BICD2 plays a role in the dynein- dynactin interaction on the surface of membranous organelles, by associating with these complexes.


Assuntos
Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Chlorocebus aethiops , DNA Complementar , Drosophila melanogaster , Complexo Dinactina , Células HeLa , Humanos , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Nocodazol/farmacologia , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA