Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 196: 1-6, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31059707

RESUMO

Toxoplasmosis is a disease caused by Toxoplasma gondii, an intracellular protozoan able to infect a wide range of hosts. The infection is particularly severe in immunocompromised patients or during pregnancy, circumstances in which the parasite could find a more favorable microenvironment to replicate and invade host tissues. The current treatment consists in toxic drugs for the patients, being not appropriate for the fetuses and immunodeficient patients. So far, there is a lack of available vaccine to prevent the disease. The present study aimed to evaluate the immune response induced by peptides derived from parasite immunodominant proteins from key components, as surface, rhoptry, microneme and dense granule antigens. A panel of eleven peptides was selected considering the highest scores for B cell epitope prediction by in silico analyses. The peptides were divided in groups, according to the parasite organelle locations, and used to immunize C57BL/6 mice. The animals were submitted to three doses of immunization and infected by 10 cysts of T. gondii ME49 strain. Blood samples were collected and used to measure the production of antibodies and cytokines, while the brains were collected to determine the parasite burden by quantitative polymerase chain reaction (qPCR). It was found that synthetic peptides from all targets were able to induce IgG synthesis in immunized mice, as well as to modulate the Th1/Th2 cytokine production, particularly the MIC and SRS groups, which presented the IFN-γ/IL-10 and TNF-α/IL-10 ratios 30 and 10 times higher, respectively, when compared with non-immunized group. Interestingly, the animals from MIC and SRS groups had significantly lower levels of T. gondii DNA in their brains. In summary, it can be concluded that peptides mainly from SRS and MIC parasite components constitute relevant targets to design vaccine candidates against parasite burden observed during chronic toxoplasmosis.


Assuntos
Encéfalo/parasitologia , Epitopos Imunodominantes/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Encéfalo/imunologia , Citocinas/metabolismo , Epitopos de Linfócito B/imunologia , Feminino , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/imunologia , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...