Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127651, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949265

RESUMO

Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 µM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antineoplásicos/química , DNA/química , Substâncias Intercalantes/farmacologia , Acridinas/farmacologia , Acridinas/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
2.
Artigo em Inglês | MEDLINE | ID: mdl-37844749

RESUMO

The mixture of agrochemicals can be made to improve pest control or accidentally. In this way, the effects on non-target organisms are a critical aspect of the environment and heath. Thus, this work aimed to show how a mixture of pyriproxyfen, and glyphosate can impair biochemical routes and embryonic development. Zebrafish embryos 0-72 hpf were exposed to 0.001-1 µg/mL of pyriproxyfen, glyphosate, and a mixture of both pesticides. The ADMETox was evaluated in silico. The FET-test was used to estimate teratogenic effects. The biochemical effects were estimated using AChE, SOD, and CAT as parameters. ROS generation was estimated using 30 µM H2DCF-DA and 5 µM DHE. The ADMETox reveals that intestinal absorption and P-glycoprotein are the main sites for PPx and Gly adsorption. The distribution parameters were diverse. PPx + Gly at 0.1 µg/mL leads to 50 % of lethality and at 1 µg/mL 100 % of lethality. PPx + Gly leads to a 22 % of lack of somite formation at 1 µg/mL. The heart rate was reduced by >10 % in all concentrations tested. The AChE has a decrease with IC20 19.6 µM and IC50 261.5 µM. SOD showed a reduction of 28 % to PPx and CAT was reduced by 58 % to PPx + Gly and Gly at 1 µg/mL. Glyphosate does not increase unspecific ROS generation. The superoxide generation was 2× higher in the PPx + Gly at 1 µg/mL. Summarily, was observed that the mixture of PPx + Gly potentiated the toxic effects. This finding suggests a possible synergism between the PPx and Gly even at lower concentrations.


Assuntos
Superóxido Dismutase , Peixe-Zebra , Animais , Espécies Reativas de Oxigênio , Glifosato
3.
Bioorg Med Chem ; 28(23): 115757, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32992245

RESUMO

Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.


Assuntos
Antivirais/uso terapêutico , Vacinas contra COVID-19/imunologia , COVID-19/terapia , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , COVID-19/imunologia , Humanos , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...