Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 36(1): 1370-1377, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34148470

RESUMO

Organophosphorus poisoning caused by some pesticides and nerve agents is a life-threating condition that must be swiftly addressed to avoid casualties. Despite the availability of medical countermeasures, the clinically available compounds lack a broad spectrum, are not effective towards all organophosphorus toxins, and have poor pharmacokinetics properties to allow them crossing the blood-brain barrier, hampering cholinesterase reactivation at the central nervous system. In this work, we designed and synthesised novel isatin derivatives, linked to a pyridinium 4-oxime moiety by an alkyl chain with improved calculated properties, and tested their reactivation potency against paraoxon- and NEMP-inhibited acetylcholinesterase in comparison to the standard antidote pralidoxime. Our results showed that these compounds displayed comparable in vitro reactivation also pointed by the in silico studies, suggesting that they are promising compounds to tackle organophosphorus poisoning.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Reativadores da Colinesterase/farmacologia , Isatina/farmacologia , Piridinas/farmacologia , Simulação por Computador , Técnicas In Vitro
2.
Biomolecules ; 9(10)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597234

RESUMO

Casualties caused by organophosphorus pesticides are a burden for health systems in developing and poor countries. Such compounds are potent acetylcholinesterase irreversible inhibitors, and share the toxic profile with nerve agents. Pyridinium oximes are the only clinically available antidotes against poisoning by these substances, but their poor penetration into the blood-brain barrier hampers the efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in future SAR studies, we evaluated neutral aryloximes as reactivators for paraoxon-inhibited Electrophorus eel acetylcholinesterase. Our findings may result into lead compounds, useful for development of more active compounds for emergencies and supportive care.


Assuntos
Acetilcolinesterase/metabolismo , Electrophorus/metabolismo , Reativadores Enzimáticos/farmacologia , Oximas/farmacologia , Paraoxon/toxicidade , Animais , Reativadores Enzimáticos/química , Proteínas de Peixes/metabolismo , Técnicas In Vitro , Estrutura Molecular , Oximas/química , Relação Estrutura-Atividade
3.
Chem Biol Interact ; 309: 108682, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31163137

RESUMO

Casualties caused by nerve agents, potent acetylcholinesterase inhibitors, have attracted attention from media recently. Poisoning with these chemicals may be fatal if not correctly addressed. Therefore, research on novel antidotes is clearly warranted. Pyridinium oximes are the only clinically available compounds, but poor penetration into the blood-brain barrier hampers efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in SAR studies, we synthesized and evaluated neutral aryloximes as reactivators for acetylcholinesterase inhibited by NEMP, a VX surrogate. Although few tested compounds reached comparable reactivation results with clinical standards, they may be considered as leads for further optimization.


Assuntos
Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/síntese química , Oximas/química , Pirrolidinas/química , Acetilcolinesterase/química , Animais , Antídotos/síntese química , Antídotos/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Reativadores da Colinesterase/metabolismo , Enguias , Compostos Organotiofosforados/química , Compostos Organotiofosforados/metabolismo , Oximas/metabolismo , Pirrolidinas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...