Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402020

RESUMO

Obesity is closely associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation and hepatocyte injury. Preclinical studies have shown exacerbated weight gain associated with an obesogenic gluten-containing diet. However, whether gluten affects obesity-induced hepatic lipid accumulation still remains unclear. We hypothesized that gluten intake could affect fatty liver development in high-fat diet (HFD)-induced obese mice. Thus, we aimed to investigate the impact of gluten intake on NAFLD in HFD-induced obese mice. Male apolipoprotein E-deficient (Apoe-/-) mice were fed with a HFD containing (GD) or not (GFD) vital wheat gluten (4.5%) for 10 weeks. Blood and liver were collected for further analysis. We found that gluten exacerbated weight gain, hepatic fat deposition, and hyperglycemia without affecting the serum lipid profile. Livers of the GD group showed a larger area of fibrosis, associated with the expression of collagen and MMP9, and higher expression of apoptosis-related factors, p53, p21, and caspase-3. The expression of lipogenic factors, such as PPARγ and Acc1, was more elevated and factors related to beta-oxidation, such as PPARα and Cpt1, were lower in the GD group compared to the GFD. Further, gluten intake induced a more significant expression of Cd36, suggesting higher uptake of free fatty acids. Finally, we found lower protein expression of PGC1α followed by lower activation of AMPK. Our data show that gluten-containing high-fat diet exacerbated NAFLD by affecting lipogenesis and fatty acid oxidation in obese Apoe-/- mice through a mechanism involving lower activation of AMPK.

2.
Food Funct ; 14(7): 3332-3347, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940107

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder in the world. We have seen that gluten intake exacerbated obesity and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. In this study, we investigated the effect of gluten consumption on inflammation and oxidative stress in the liver of mice with NAFLD. Male ApoE-/- mice were fed a gluten-free (GF-HFD) or gluten-containing (G-HFD) high-fat diet for 10 weeks. Blood, liver, and spleen were collected to perform the analyses. The animals of the gluten group had increased hepatic steatosis, followed by increased serum AST and ALT. Gluten intake increased hepatic infiltration of neutrophils, macrophages, and eosinophils, as well as the levels of chemotaxis-related factors CCL2, Cxcl2, and Cxcr3. The production of the TNF, IL-1ß, IFNγ, and IL-4 cytokines in the liver was also increased by gluten intake. Furthermore, gluten exacerbated the hepatic lipid peroxidation and nitrotyrosine deposition, which were associated with increased production of ROS and nitric oxide. These effects were related to increased expression of NADPH oxidase and iNOS, as well as decreased activity of superoxide dismutase and catalase enzymes. There was an increased hepatic expression of the NF-κB and AP1 transcription factors, corroborating the worsening effect of gluten on inflammation and oxidative stress. Finally, we found an increased frequency of CD4+FOXP3+ lymphocytes in the spleen and increased gene expression of Foxp3 in the livers of the G-HFD group. In conclusion, dietary gluten aggravates NAFLD, exacerbating hepatic inflammation and oxidative stress in obese ApoE-deficient mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glutens/metabolismo , Camundongos Knockout para ApoE , Fígado/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Apolipoproteínas E/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL
3.
Pain ; 164(6): e274-e285, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719418

RESUMO

ABSTRACT: Nociceptive afferent signaling evoked by inflammation and nerve injury is mediated by the opening of ligand-gated and voltage-gated receptors or channels localized to cholesterol-rich lipid raft membrane domains. Dorsal root ganglion (DRG) nociceptors express high levels of toll-like receptor 4 (TLR4), which also localize to lipid rafts. Genetic deletion or pharmacologic blocking of TLR4 diminishes pain associated with chemotherapy-induced peripheral neuropathy (CIPN). In DRGs of mice with paclitaxel-induced CIPN, we analyzed DRG neuronal lipid rafts, expression of TLR4, activation of transient receptor potential cation channel subfamily V member 1 (TRPV1), and TLR4-TRPV1 interaction. Using proximity ligation assay, flow cytometry, and whole-mount DRG microscopy, we found that CIPN increased DRG neuronal lipid rafts and TLR4 expression. These effects were reversed by intrathecal injection of apolipoprotein A-I binding protein (AIBP), a protein that binds to TLR4 and specifically targets cholesterol depletion from TLR4-expressing cells. Chemotherapy-induced peripheral neuropathy increased TRPV1 phosphorylation, localization to neuronal lipid rafts, and proximity to TLR4. These effects were also reversed by AIBP treatment. Regulation of TRPV1-TLR4 interactions and their associated lipid rafts by AIBP covaried with the enduring reversal of mechanical allodynia otherwise observed in CIPN. In addition, AIBP reduced intracellular calcium in response to the TRPV1 agonist capsaicin, which was increased in DRG neurons from paclitaxel-treated mice and in the naïve mouse DRG neurons incubated in vitro with paclitaxel. Together, these results suggest that the assembly of nociceptive and inflammatory receptors in the environment of lipid rafts regulates nociceptive signaling in DRG neurons and that AIBP can control lipid raft-associated nociceptive processing.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Ratos , Antineoplásicos/efeitos adversos , Proteínas de Transporte/metabolismo , Colesterol/efeitos adversos , Colesterol/metabolismo , Gânglios Espinais/metabolismo , Microdomínios da Membrana/metabolismo , Neurônios/metabolismo , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Canais de Cátion TRPV/metabolismo
4.
Life Sci ; 309: 120994, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155180

RESUMO

AIMS: Obesity can lead to the loss of the anticontractile properties of perivascular adipose tissue (PVAT). Given that cafeteria (CAF) diet reflects the variety of highly calorie and easily accessible foods in Western societies, contributing to obesity and metabolic disorders, we sought to investigate the impact of CAF diet on PVAT vasoactive profile and the involvement of renin-angiotensin system, oxidative stress, and cyclooxygenase pathway. MAIN METHODS: Male Balb/c mice received standard or CAF diet for 4 weeks. Oral glucose tolerance and insulin sensitivity tests were performed, and fasting serum glucose, cholesterol and triglyceride parameters were determined. Vascular reactivity, fluorescence and immunofluorescence analyzes were carried out in intact thoracic aorta in the presence or absence of PVAT. KEY FINDINGS: CAF diet was effective in inducing obesity and metabolic disorders, as demonstrated by increased body weight gain and adiposity index, hyperlipidemia, hyperglycemia, glucose intolerance and insulin insensitivity. Importantly, CAF diet led to a significant decrease in aortic contractility which was restored in the presence of PVAT, exhibiting therefore a contractile profile. The contractile effect of PVAT was associated with the activation of AT1 receptor, reactive oxygen species, cyclooxygenase-1, thromboxane A2 and prostaglandin E2 receptors. SIGNIFICANCE: These findings suggest that the contractile profile of PVAT involving the renin-angiotensin system activation, reactive oxygen species and cyclooxygenase-1 metabolites may be a protective compensatory adaptive response during early stage of CAF diet-induced obesity as an attempt to restore the impaired vascular contraction observed in the absence of PVAT, contributing to the maintenance of vascular tone.


Assuntos
Insulinas , Prostaglandinas , Animais , Camundongos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Prostaglandinas/metabolismo , Ciclo-Oxigenase 1/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Tecido Adiposo/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos BALB C , Glucose/metabolismo , Tromboxanos/metabolismo , Triglicerídeos/metabolismo , Insulinas/metabolismo
5.
Inflamm Res ; 71(4): 439-448, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35274151

RESUMO

OBJECTIVE: This study was conducted to investigate the effects of the synthetic PAR2 agonist peptide (PAR2-AP) SLIGRL-NH2 on LPS-induced inflammatory mechanisms in peritoneal macrophages. METHODS: Peritoneal macrophages obtained from C57BL/6 mice were incubated with PAR2-AP and/or LPS, and the phagocytosis of zymosan fluorescein isothiocyanate (FITC) particles; nitric oxide (NO), reactive oxygen species (ROS), and cytokine production; and inducible NO synthase (iNOS) expression in macrophages co-cultured with PAR-2-AP/LPS were evaluated. RESULTS: Co-incubation of macrophages with PAR2AP (30 µM)/LPS (100 ng/mL) enhanced LPS-induced phagocytosis; production of NO, ROS, and the pro-inflammatory cytokines interleukin (IL)-1ß, tumour necrosis factor (TNF)-α, IL-6, and C-C motif chemokine ligand (CCL)2; and iNOS expression and impaired the release of the anti-inflammatory cytokine IL-10 after 4 h of co-stimulation. In addition, PAR2AP increased the LPS-induced translocation of the p65 subunit of the pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and reduced the expression of inhibitor of NF-κB. CONCLUSION: This study provides evidence of a role for PAR2 in macrophage response triggered by LPS enhancing the phagocytic activity and NO, ROS, and cytokine production, resulting in the initial and adequate macrophage response required for their innate response mechanisms.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor PAR-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970188

RESUMO

Neuroinflammation is a major component in the transition to and perpetuation of neuropathic pain states. Spinal neuroinflammation involves activation of TLR4, localized to enlarged, cholesterol-enriched lipid rafts, designated here as inflammarafts. Conditional deletion of cholesterol transporters ABCA1 and ABCG1 in microglia, leading to inflammaraft formation, induced tactile allodynia in naive mice. The apoA-I binding protein (AIBP) facilitated cholesterol depletion from inflammarafts and reversed neuropathic pain in a model of chemotherapy-induced peripheral neuropathy (CIPN) in wild-type mice, but AIBP failed to reverse allodynia in mice with ABCA1/ABCG1-deficient microglia, suggesting a cholesterol-dependent mechanism. An AIBP mutant lacking the TLR4-binding domain did not bind microglia or reverse CIPN allodynia. The long-lasting therapeutic effect of a single AIBP dose in CIPN was associated with anti-inflammatory and cholesterol metabolism reprogramming and reduced accumulation of lipid droplets in microglia. These results suggest a cholesterol-driven mechanism of regulation of neuropathic pain by controlling the TLR4 inflammarafts and gene expression program in microglia and blocking the perpetuation of neuroinflammation.


Assuntos
Colesterol/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Medula Espinal/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Inflamação/metabolismo , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia
7.
Front Physiol ; 11: 628101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519529

RESUMO

The perivascular adipose tissue (PVAT) is an active endocrine organ responsible for release several substances that influence on vascular tone. Increasing evidence suggest that hyperactivation of the local renin-angiotensin system (RAS) in the PVAT plays a pivotal role in the pathogenesis of cardiometabolic diseases. However, the local RAS contribution to the PVAT control of vascular tone during obesity is still not clear. Since the consumption of a high-carbohydrate diet (HC diet) contributes to obesity inducing a rapid and sustained increase in adiposity, so that the functional activity of PVAT could be modulated, we aimed to evaluate the effect of HC diet on the PVAT control of vascular tone and verify the involvement of RAS in this effect. For that, male Balb/c mice were fed standard or HC diet for 4 weeks. Vascular reactivity, histology, fluorescence, and immunofluorescence analysis were performed in intact thoracic aorta in the presence or absence of PVAT. The results showed that HC diet caused an increase in visceral adiposity and also in the PVAT area. Phenylephrine-induced vasoconstriction was significantly reduced in the HC group only in the presence of PVAT. The anticontractile effect of PVAT induced by HC diet was lost when aortic rings were previously incubated with angiotensin-converting enzyme inhibitor, Mas, and AT2 receptors antagonists, PI3K, nNOS, and iNOS inhibitors, hydrogen peroxide (H2O2) decomposing enzyme or non-selective potassium channels blocker. Immunofluorescence assays showed that both Mas and AT2 receptors as well as nNOS and iNOS isoforms were markedly expressed in the PVAT of the HC group. Furthermore, the PVAT from HC group also exhibited higher nitric oxide (NO) and hydrogen peroxide bioavailability. Taken together, these findings suggest that the anticontractile effect of PVAT induced by HC diet involves the signaling cascade triggered by the renin-angiotensin system through the activation of Mas and AT2 receptors, PI3K, nNOS, and iNOS, leading to increased production of nitric oxide and hydrogen peroxide, and subsequently opening of potassium channels. The contribution of PVAT during HC diet-induced obesity could be a compensatory adaptive characteristic in order to preserve the vascular function.

8.
Toxicol Lett ; 299: 21-31, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30172001

RESUMO

White adipose tissue (WAT) dysfunction and obesity are a consequence of a low-grade inflammation state. These WAT irregularities could result from abnormal metabolic renin-angiotensin system (RAS) control. Recently, tributyltin (TBT) has been found to play a critical role in these metabolic irregularities. However, TBT actions on the WAT-RAS functions are not currently well understood. In this study, we assessed whether TBT exposure resulted in metabolic syndrome (MetS) development and other metabolic complications as a result of abnormal modulation of WAT-RAS pathways. TBT (100 ng/kg/day) was administered to adult female Wistar rats, and their WAT morphophysiology and adipokine profiles were assessed. We further assessed the expression of Angiotensin-II receptor proteins (AT1R and AT2R) and proteins involved in downstream pathways mediating inflammation and adipogenesis modulation. TBT-exposed rats exhibited increases in body weight and adiposity. TBT rats present dyslipidemia and insulin resistance, suggesting MetS development. TBT promoted WAT inflammatory infiltration, AT1R protein overexpression and reduced Angiotensin-(1-7) expression. These TBT WAT abnormalities are reflected by NFκB activation, with higher adipokine levels (leptin, TNF-α and IL-6) and overexpression of AKT, ERK, P38, FAS and PPARγ protein. In vitro, TBT exposure stimulates lipid accumulation, reduces AT2R protein expression, and increases leptin, AKT and ERK protein expression in 3T3L1 cells. These findings suggest that TBT exposure participates in MetS development via the improper function of WAT-RAS metabolic control.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Síndrome Metabólica/induzido quimicamente , Receptores de Angiotensina/metabolismo , Compostos de Trialquitina/toxicidade , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Ratos Wistar , Transdução de Sinais
9.
Life Sci ; 142: 86-91, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26455551

RESUMO

AIMS: We evaluated the acute effects of different intensities of resistance exercise over endothelium-dependent vasodilatation, eNOSser1177 phosphorylation level and endothelial production of NO in superior mesenteric artery of healthy rats. MAIN METHODS: Groups: control (Ct), resistance exercise in the intensities of 30% (Ex30%), 50% (Ex50%) and 70% (Ex70%) of the maximal load established by the maximal repetition test (1RM). Exercise protocol: 15 sets of 10 repetitions. The rings of mesenteric artery were mounted in an isometric system or were prepared for further implementation of Western blot and DAF-FM techniques. KEY FINDINGS: The maximal response of the relaxation induced by insulin was not altered in the animals of the Ex30% group when compared to the Ct group. However, the animals of the Ex50% and Ex70% groups presented an increase in this response when compared to the Ct group. The eNOSser1177 phosphorylation levels showed an increase in Ex50% and Ex70% groups when compared to the Ct (1.6-fold and 3.3-fold, respectively). In the endothelial production of NO, it was observed that the Ex30% group did not show alteration in the NO production when compared to the Ct group. On the other hand, the animals exercised in the Ex50% and Ex70% groups showed increase in the NO synthesis when compared to the animals in the Ct group. SIGNIFICANCE: Our results suggest that the magnitude of these vascular endothelium adjustments is strongly related to the increase of the resistance exercise intensity from the intensity of 50% of 1 RM.


Assuntos
Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico/biossíntese , Condicionamento Físico Animal , Vasodilatação/fisiologia , Animais , Masculino , Fosforilação/fisiologia , Ratos , Ratos Wistar
10.
Can J Physiol Pharmacol ; 89(4): 305-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21529144

RESUMO

The main purpose of this study was to investigate the effects of short-term L-NAME treatment on the contractile function of left ventricle (LV) myocytes and the expression of proteins related to Ca(2+) homeostasis. Data from Wistar rats treated with L-NAME (L group, n = 20; 0.7 g/L in drinking water; 7 days) were compared with results from untreated controls (C group, n = 20). Cardiomyocytes from the L group showed increased (p < 0.05) fractional shortening (23%) and maximum rate of shortening (20%) compared with the C group. LV from the L group also showed increased (p < 0.05) expression of the ryanodine receptor 2 and Na(+)/Ca(2+) exchanger proteins (76% and 83%, respectively; p < 0.05). However, the L and C groups showed similar in vivo hemodynamic parameters of cardiac function. In conclusion, short-term NOS inhibition determines an increased expression of Ca(2+) regulatory proteins, which contributes to improving cardiomyocyte contractile function, preserving left ventricular function.


Assuntos
Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Animais , Cálcio/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/enzimologia , Ventrículos do Coração/metabolismo , Hemodinâmica/efeitos dos fármacos , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Trocador de Sódio e Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...