Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32166324

RESUMO

Genetic research has revealed pro-opiomelanocortin (POMC) to be a fundamental regulator of energy balance and body weight in mammals. Within the brain, POMC is primarily expressed in the arcuate nucleus of the hypothalamus (ARC), while a smaller population exists in the brainstem nucleus of the solitary tract (POMCNTS). We performed a neurochemical characterization of this understudied population of POMC cells using transgenic mice expressing green fluorescent protein (eGFP) under the control of a POMC promoter/enhancer (PomceGFP). Expression of endogenous Pomc mRNA in the nucleus of the solitary tract (NTS) PomceGFP cells was confirmed using fluorescence-activating cell sorting (FACS) followed by quantitative PCR. In situ hybridization histochemistry of endogenous Pomc mRNA and immunohistochemical analysis of eGFP revealed that POMC is primarily localized within the caudal NTS. Neurochemical analysis indicated that POMCNTS is not co-expressed with tyrosine hydroxylase (TH), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), brain-derived neurotrophic factor (BDNF), nesfatin, nitric oxide synthase 1 (nNOS), seipin, or choline acetyltransferase (ChAT) cells, whereas 100% of POMCNTS is co-expressed with transcription factor paired-like homeobox2b (Phox2b). We observed that 20% of POMCNTS cells express receptors for adipocyte hormone leptin (LepRbs) using a PomceGFP:LepRbCre:tdTOM double-reporter line. Elevations in endogenous or exogenous leptin levels increased the in vivo activity (c-FOS) of a small subset of POMCNTS cells. Using ex vivo slice electrophysiology, we observed that this effect of leptin on POMCNTS cell activity is postsynaptic. These findings reveal that a subset of POMCNTS cells are responsive to both changes in energy status and the adipocyte hormone leptin, findings of relevance to the neurobiology of obesity.


Assuntos
Tronco Encefálico/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colecistocinina/metabolismo , Colina O-Acetiltransferase/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/metabolismo , Nucleobindinas/metabolismo , Regiões Promotoras Genéticas , Receptores para Leptina/genética , Tirosina 3-Mono-Oxigenase/metabolismo
2.
J Comp Neurol ; 527(17): 2826-2842, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045239

RESUMO

When energy balance is altered by aerobic exercise, starvation, and cold exposure, for example, there appears to be coordination of the responses of skeletal muscle, white adipose (WAT), and brown adipose (BAT) tissues. We hypothesized that WAT, BAT, and skeletal muscle may share an integrated regulation by the central nervous system (CNS); specifically, that neurons in brain regions associated with energy balance would possess neuroanatomical connections to permit coordination of multiple, complementary responses in these downstream tissues. To study this, we used trans-neuronal viral retrograde tract tracing, using isogenic strains of pseudorabies virus (PRV) with distinct fluorescent reporters (either eGFP or mRFP), injected pairwise into male rat gastrocnemius, subcutaneous WAT and interscapular BAT, coupled with neurochemical characterization of specific cell populations for cocaine- and amphetamine-related transcript (CART), oxytocin (OX), corticotrophin releasing hormone (CRH) and calcitonin gene-related peptide (CGRP). Cells in the paraventricular (PVN) and parabrachial (PBN) nuclei and brainstem showed dual projections to muscle + WAT, muscle + BAT, and WAT + BAT. Dual PRV-labeled cells were found in parvocellular, magnocellular and descending/pre-autonomic regions of the PVN, and multiple structural divisions of the PBN and brainstem. In most PBN subdivisions, more than 50% of CGRP cells dually projected to muscle + WAT and muscle + BAT. Similarly, 31-68% of CGRP cells projected both to WAT + BAT. However, dual PRV-labeled cells in PVN only occasionally expressed OX or CRH but not CART. These studies reveal for the first time both separate and shared outflow circuitries among skeletal muscle and subcutaneous WAT and BAT.


Assuntos
Tecido Adiposo Marrom/inervação , Tecido Adiposo Branco/inervação , Tronco Encefálico/citologia , Músculo Esquelético/inervação , Neurônios/citologia , Núcleo Hipotalâmico Paraventricular/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Tronco Encefálico/metabolismo , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley
3.
Cell Metab ; 28(4): 619-630.e5, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30146485

RESUMO

To meet the challenge to human health posed by obesity, a better understanding of the regulation of feeding is essential. Medications targeting 5-hydroxytryptamine (5-HT; serotonin) 2C receptors (htr2c; 5-HT2CR) improve obesity. Here we probed the functional significance of 5-HT2CRs specifically within the brainstem nucleus of the solitary tract (5-HT2CRNTS) in feeding behavior. Selective activation of 5-HT2CRNTS decreased feeding and was sufficient to mediate acute food intake reductions elicited by the 5-HT2CR agonist obesity medication lorcaserin. Similar to pro-opiomelanocortin neurons expressed within the hypothalamic arcuate nucleus (POMCARC), a subset of POMCNTS neurons co-expressed 5-HT2CRs and were activated by 5-HT2CR agonists. Knockdown of POMCNTS prevented the acute appetite-suppressive effect of lorcaserin, whereas POMCARC knockdown prevented the full anorectic effect. These data identify 5-HT2CRNTS as a sufficient subpopulation of 5-HT2CRs in reducing food intake when activated and reveal that 5-HT2CR agonist obesity medications require POMC within the NTS and ARC to reduce food intake.


Assuntos
Depressores do Apetite/uso terapêutico , Benzazepinas/uso terapêutico , Ingestão de Alimentos/fisiologia , Obesidade/tratamento farmacológico , Agonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Núcleo Solitário/metabolismo , Análise de Variância , Animais , Depressores do Apetite/metabolismo , Regulação do Apetite/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/citologia , Benzazepinas/metabolismo , Linhagem Celular Tumoral , Comportamento Alimentar/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/metabolismo , Estatísticas não Paramétricas , Transfecção
4.
Mol Metab ; 5(3): 245-252, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977396

RESUMO

OBJECTIVE: Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. METHODS: Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR) agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT 2C R (CRE) mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable Pomc (NEO) mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. RESULTS: Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT) into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. CONCLUSIONS: These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR expressing neurons is sufficient to regulate energy intake and insulin sensitivity in male and female mice. However, an unexpected sex difference in the function of this subset of POMC neurons was identified with regard to energy expenditure. We reveal that a large sex difference in physical activity, energy expenditure and the development of obesity is driven by this subpopulation, which constitutes approximately 40% of all POMC neurons in the hypothalamic arcuate nucleus. This may have broad implications for strategies utilized to combat obesity, which at present largely ignore the sex of the obese individual.

5.
PLoS One ; 10(10): e0139462, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444289

RESUMO

Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks' refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.


Assuntos
Peso Corporal/fisiologia , Melanocortinas/metabolismo , Obesidade/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiopatologia , Restrição Calórica/métodos , Dieta/métodos , Gorduras na Dieta/metabolismo , Leptina/metabolismo , Neuropeptídeo Y/metabolismo , Peptídeos Cíclicos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Núcleo Hipotalâmico Ventromedial/fisiopatologia , alfa-MSH/análogos & derivados , alfa-MSH/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Endocrinology ; 155(10): 3732-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25051442

RESUMO

The phenomenon commonly described as the middle-age spread is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and, in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Using a selective ARC-deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite-suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine, and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow-fed young lean (3-5 months old) and middle-aged obese (12-14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT-POMC appetitive anatomical machinery. Specifically, the abundance and signaling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that although 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging, findings of clinical significance to the global aging obese population.


Assuntos
Envelhecimento/metabolismo , Fenfluramina/uso terapêutico , Obesidade/tratamento farmacológico , Pró-Opiomelanocortina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Serotonina/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Opiomelanocortina/genética , Resultado do Tratamento
7.
J Neurosci ; 33(23): 9800-4, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739976

RESUMO

An essential component of the neural network regulating ingestive behavior is the brain 5-hydroxytryptamine2C receptor (5-HT2CR), agonists of which suppress food intake and were recently approved for obesity treatment by the US Food and Drug Administration. 5-HT2CR-regulated appetite is mediated primarily through activation of hypothalamic arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons, which are also disinhibited through a 5-HT1BR-mediated suppression of local inhibitory inputs. Here we investigated whether 5-HT2CR agonist anorectic potency could be significantly enhanced by coadministration of a 5-HT1BR agonist and whether this was associated with augmented POMC neuron activation on the population and/or single-cell level. The combined administration of subanorectic concentrations of 5-HT2CR and 5-HT1BR agonists produced a 45% reduction in food intake and significantly greater in vivo ARC neuron activation in mice. The chemical phenotype of activated ARC neurons was assessed by monitoring agonist-induced cellular activity via calcium imaging in mouse POMC-EGFP brain slices, which revealed that combined agonists activated significantly more POMC neurons (46%) compared with either drug alone (∼25% each). Single-cell electrophysiological analysis demonstrated that 5-HT2CR/5-HT1BR agonist coadministration did not significantly potentiate the firing frequency of individual ARC POMC-EGFP cells compared with agonists alone. These data indicate a functional heterogeneity of ARC POMC neurons by revealing distinct subpopulations of POMC cells activated by 5-HT2CRs and disinhibited by 5-HT1BRs. Therefore, coadministration of a 5-HT1BR agonist potentiates the anorectic efficacy of 5-HT2CR compounds by increasing the number, but not the magnitude, of activated ARC POMC neurons and is of therapeutic relevance to obesity treatment.


Assuntos
Depressores do Apetite/administração & dosagem , Ingestão de Alimentos/fisiologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Animais , Sinergismo Farmacológico , Quimioterapia Combinada , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Pró-Opiomelanocortina/antagonistas & inibidores , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...