Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(3): 733-749.e16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306984

RESUMO

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.


Assuntos
Autoanticorpos , Doenças Autoimunes , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Autoanticorpos/genética , Doenças Autoimunes/genética , Autoimunidade/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Caracteres Sexuais
2.
Nat Commun ; 11(1): 6163, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268787

RESUMO

Long noncoding RNAs are thought to regulate gene expression by organizing protein complexes through unclear mechanisms. XIST controls the inactivation of an entire X chromosome in female placental mammals. Here we develop and integrate several orthogonal structure-interaction methods to demonstrate that XIST RNA-protein complex folds into an evolutionarily conserved modular architecture. Chimeric RNAs and clustered protein binding in fRIP and eCLIP experiments align with long-range RNA secondary structure, revealing discrete XIST domains that interact with distinct sets of effector proteins. CRISPR-Cas9-mediated permutation of the Xist A-repeat location shows that A-repeat serves as a nucleation center for multiple Xist-associated proteins and m6A modification. Thus modular architecture plays an essential role, in addition to sequence motifs, in determining the specificity of RBP binding and m6A modification. Together, this work builds a comprehensive structure-function model for the XIST RNA-protein complex, and suggests a general strategy for mechanistic studies of large ribonucleoprotein assemblies.


Assuntos
Adenina/análogos & derivados , Células-Tronco Embrionárias Murinas/metabolismo , RNA Longo não Codificante/química , Ribonucleoproteínas/química , Adenina/metabolismo , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Linhagem Celular , Sequência Conservada , Reagentes de Ligações Cruzadas , Feminino , Ficusina/química , Formaldeído/química , Técnicas de Introdução de Genes , Humanos , Células K562 , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Conformação de Ácido Nucleico , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Análise de Sequência de RNA
3.
Elife ; 92020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32379046

RESUMO

The Xist lncRNA mediates X chromosome inactivation (XCI). Here we show that Spen, an Xist-binding repressor protein essential for XCI , binds to ancient retroviral RNA, performing a surveillance role to recruit chromatin silencing machinery to these parasitic loci. Spen loss activates a subset of endogenous retroviral (ERV) elements in mouse embryonic stem cells, with gain of chromatin accessibility, active histone modifications, and ERV RNA transcription. Spen binds directly to ERV RNAs that show structural similarity to the A-repeat of Xist, a region critical for Xist-mediated gene silencing. ERV RNA and Xist A-repeat bind the RRM domains of Spen in a competitive manner. Insertion of an ERV into an A-repeat deficient Xist rescues binding of Xist RNA to Spen and results in strictly local gene silencing in cis. These results suggest that Xist may coopt transposable element RNA-protein interactions to repurpose powerful antiviral chromatin silencing machinery for sex chromosome dosage compensation.


The genetic material inside cells is often packaged into thread-like structures called chromosomes. In humans, mice and other mammals, a pair of sex chromosomes determines the genetic or chromosomal sex of each individual. Those who inherit two "X" chromosomes are said to be chromosomally female, while chromosomal males have one "X" and one "Y" chromosome. This means females have twice as many copies of genes on the X chromosome as a male does, which turns out to be double the number that the body needs. To solve this problem, mammals have developed a strategy known as dosage compensation. The second X chromosome in females becomes "silent": its DNA remains unchanged, but none of the genes are active. A long noncoding RNA molecule called Xist is responsible for switching off the extra X genes in female cells. It does this by coating the entirety of the second X chromosome. Normally, RNA molecules transmit the coded instructions in genes to the cellular machinery that manufactures proteins. "Noncoding" RNAs like Xist, however, are RNAs that have taken on different jobs inside the cell. Researchers believe that the ancestral Xist gene may have once encoded a protein but changed over time to produce only a noncoding RNA. Carter, Xu et al. therefore set out to find out how exactly this might have happened, and also how Xist might have acquired its ability to switch genes off. Initial experiments used mouse cells grown in the laboratory, in which a protein called Spen was deleted. Spen is known to help Xist silence the X chromosome. In female cells lacking Spen, the second X chromosome remained active. Other chromosomes in male and female cells also had stretches of DNA that became active upon Spen's removal. These DNA sequences, termed endogenous retroviruses, were remnants of ancestral viral infections. In other words, Spen normally acted as an antiviral defense. Analysis of genetic sequences showed that Spen recognized endogenous retrovirus sequences resembling a key region in Xist, a region which was needed for Xist to work properly. Inserting fragments of endogenous retroviruses into a defective version of Xist lacking this region also partially restored its ability to inactivate genes, suggesting that X chromosome silencing might work by hijacking cellular defenses against viruses. That is, female cells essentially 'pretend' there is a viral infection on the second X chromosome by coating it with Xist (which mimics endogenous retroviruses), thus directing Spen to shut it down. This research is an important step towards understanding how female cells carry out dosage compensation in mammals. More broadly, it sheds new light on how ancient viruses may have shaped the evolution of noncoding RNAs in the human genome.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Retrovirus Endógenos/genética , Células-Tronco Embrionárias Murinas/virologia , RNA Longo não Codificante/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Inativação do Cromossomo X , Cromossomo X , Animais , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA/genética , Mecanismo Genético de Compensação de Dose , Retrovirus Endógenos/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , RNA Longo não Codificante/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética
4.
Exp Hematol ; 65: 1-16, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29981365

RESUMO

Hematopoietic stem cells (HSCs) are multipotent cells responsible for the maintenance of the hematopoietic system throughout life. Dysregulation of the balance in HSC self-renewal, death, and differentiation can have serious consequences such as myelodysplastic syndromes or leukemia. All-trans retinoic acid (ATRA), the biologically active metabolite of vitamin A/RA, has been shown to have pleiotropic effects on hematopoietic cells, enhancing HSC self-renewal while also increasing differentiation of more mature progenitors. Furthermore, ATRA has been shown to have key roles in regulating the specification and formation of hematopoietic cells from pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Here, we summarize the known roles of vitamin A and RA receptors in the regulation of hematopoiesis from HSCs, ES, and iPSCs.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Retinoides/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos , Modelos Biológicos , Receptores do Ácido Retinoico/fisiologia , Transdução de Sinais
5.
Nat Cell Biol ; 18(6): 595-606, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27183470

RESUMO

Pluripotent stem cells (PSCs) may provide a potential source of haematopoietic stem/progenitor cells (HSPCs) for transplantation; however, unknown molecular barriers prevent the self-renewal of PSC-HSPCs. Using two-step differentiation, human embryonic stem cells (hESCs) differentiated in vitro into multipotent haematopoietic cells that had the CD34(+)CD38(-/lo)CD90(+)CD45(+)GPI-80(+) fetal liver (FL) HSPC immunophenotype, but exhibited poor expansion potential and engraftment ability. Transcriptome analysis of immunophenotypic hESC-HSPCs revealed that, despite their molecular resemblance to FL-HSPCs, medial HOXA genes remained suppressed. Knockdown of HOXA7 disrupted FL-HSPC function and caused transcriptome dysregulation that resembled hESC-derived progenitors. Overexpression of medial HOXA genes prolonged FL-HSPC maintenance but was insufficient to confer self-renewal to hESC-HSPCs. Stimulation of retinoic acid signalling during endothelial-to-haematopoietic transition induced the HOXA cluster and other HSC/definitive haemogenic endothelium genes, and prolonged HSPC maintenance in culture. Thus, medial HOXA gene expression induced by retinoic acid signalling marks the establishment of the definitive HSPC fate and controls HSPC identity and function.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Genes Homeobox/genética , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Multipotentes/citologia , Antígenos CD34/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/genética , Humanos , Antígenos Comuns de Leucócito/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...