Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Cancer Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842581

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor affecting the pediatric population with high potential to metastasize. However, insights into the molecular features enabling its metastatic potential are limited. We mapped the active chromatin landscapes of OS tumors by integrating histone H3 lysine acetylated chromatin state (n=13), chromatin accessibility profiles (n=11) and gene expression (n=13) to understand the differences in their active chromatin profiles and its impact on molecular mechanisms driving the malignant phenotypes. Primary OS tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared to those without metastasis (localized). This difference shapes the transcriptional profile of OS. We identified novel candidate genes, including PPP1R1B, PREX1 and IGF2BP1, which exhibit increased chromatin activity in primary met. Loss of PREX1 in primary met OS cells significantly diminishes OS proliferation, invasion, migration, and colony formation capacity. Differential chromatin activity in primary met is associated with genes regulating cytoskeleton organization, cellular adhesion, and extracellular matrix suggestive of their role in facilitating OS metastasis. Chromatin profiling of tumors from metastatic lung lesions shows increased chromatin activity in genes involved in cell migration and Wnt pathway. This data demonstrates that metastatic potential is intrinsically present in primary metastatic tumors, with cellular chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal site. Implications: Our study demonstrates that metastatic potential is intrinsic to primary metastatic osteosarcoma tumors, with chromatin profiles further adapting for successful dissemination, migration and colonization at distal metastatic site.

2.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014160

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor affecting the pediatric population with high potential to metastasize to distal sites, most commonly the lung. Insights into defining molecular features contributing to metastatic potential are lacking. We have mapped the active chromatin landscapes of OS tumors by integrating histone H3 lysine acetylated chromatin (H3K27ac) profiles (n=13), chromatin accessibility profiles (n=11) and gene expression (n=13) to understand the differences in their active chromatin profiles and its impact on molecular mechanisms driving the malignant phenotypes. Primary OS tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared to primary tumors from patients without metastatic disease (localized). The difference in chromatin activity shapes the transcriptional profile of OS. We identified novel candidate genes involved in OS pathogenesis and metastasis, including PPP1R1B, PREX1 and IGF2BP1, which exhibit increased chromatin activity in primary met along with higher transcript levels. Overall, differential chromatin activity in primary met occurs in proximity of genes regulating actin cytoskeleton organization, cellular adhesion, and extracellular matrix suggestive of their role in facilitating OS metastasis. Furthermore, chromatin profiling of tumors from metastatic lung lesions noted increases in chromatin activity in genes involved in cell migration and key intracellular signaling cascades, including the Wnt pathway. Thus, this data demonstrates that metastatic potential is intrinsically present in primary metastatic tumors and the cellular chromatin profiles further adapt to allow for successful dissemination, migration, and colonization at the distal metastatic site.

3.
J Exp Clin Cancer Res ; 41(1): 43, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093151

RESUMO

BACKGROUND: Targeting mitochondrial oncoproteins presents a new concept in the development of effective cancer therapeutics. ATAD3A is a nuclear-encoded mitochondrial enzyme contributing to mitochondrial dynamics, cholesterol metabolism, and signal transduction. However, its impact and underlying regulatory mechanisms in cancers remain ill-defined. METHODS: We used head and neck squamous cell carcinoma (HNSCC) as a research platform and achieved gene depletion by lentiviral shRNA and CRISPR/Cas9. Molecular alterations were examined by RNA-sequencing, phospho-kinase profiling, Western blotting, RT-qPCR, immunohistochemistry, and immunoprecipitation. Cancer cell growth was assessed by MTT, colony formation, soft agar, and 3D cultures. The therapeutic efficacy in tumor development was evaluated in orthotopic tongue tumor NSG mice. RESULTS: ATAD3A is highly expressed in HNSCC tissues and cell lines. Loss of ATAD3A expression suppresses HNSCC cell growth and elicits tumor regression in orthotopic tumor-bearing mice, whereas gain of ATAD3A expression produces the opposite effects. From a mechanistic perspective, the tumor suppression induced by the overexpression of the Walker A dead mutant of ATAD3A (K358) produces a potent dominant-negative effect due to defective ATP-binding. Moreover, ATAD3A binds to ERK1/2 in the mitochondria of HNSCC cells in the presence of VDAC1, and this interaction is essential for the activation of mitochondrial ERK1/2 signaling. Most importantly, the ATAD3A-ERK1/2 signaling axis drives HNSCC development in a RAS-independent fashion and, thus, tumor suppression is more effectively achieved when ATAD3A knockout is combined with RAS inhibitor treatment. CONCLUSIONS: These findings highlight the novel function of ATAD3A in regulating mitochondrial ERK1/2 activation that favors HNSCC development. Combined targeting of ATAD3A and RAS signaling may potentiate anticancer activity for HNSCC therapeutics.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos NOD , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(12): 1254-1257, 2021 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-34839519

RESUMO

OBJECTIVE: To assess the correlation of borderline fetal ventriculomegaly with genomic copy number variations (CNVs) and outcome of pregnancy. METHODS: For 84 singleton pregnancies diagnosed with VM, chromosomal microarray analysis (CMA) was carried out to detect the CNVs of the fetal genome. Outcome of the pregnancy and neonatal development were analyzed. The pregnant women were divided into mild group (10-12 mm), moderate group (12-15 mm) and severe group (>= 15 mm) based on the severity of fetal ventriculomegaly. The detection rate of pathogenic CNVs and pregnancy outcome were compared. Multivariate logistic regression was carried out to analyze the predictors for pregnancy outcome. RESULTS: Respectively, 24, 28 and 32 fetuses were assigned into the mild, moderate and severe groups. CMA has detected 15 cases of chromosomal abnormalities, including 11 pathogenic CNVs and 4 abnormal karyotypes. Abnormal pregnancy outcomes were found in 20 fetuses, including 12 with hydrocephalus and 8 with chromosomal microdeletion syndromes. A significant difference was found in the detection rate of fetal pathogenic CNVs and abnormal pregnancy outcome among the three groups (P<0.05). Multivariate logistic regression analysis showed that the largest change of lateral ventricle width (OR = 1.868, 95%CI = 1.120-3.116) and the extent of lateral ventricle widening (OR = 1.571, 95%CI = 1.120-2.206) were the key factors affecting the outcome of pregnancy (P<0.05). CONCLUSION: Borderline fetal VM is associated with the risk of pathogenic CNVs and adverse pregnancy outcome. A comprehensive examination is required after prenatal ultrasound diagnosis, which is conducive to prenatal consultation and prognostic evaluation of the fetus.


Assuntos
Variações do Número de Cópias de DNA , Hidrocefalia , Aberrações Cromossômicas , Feminino , Feto , Humanos , Hidrocefalia/genética , Recém-Nascido , Análise em Microsséries , Gravidez , Resultado da Gravidez , Diagnóstico Pré-Natal
5.
Nat Neurosci ; 24(10): 1377-1391, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34413513

RESUMO

Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP), an RNA-binding protein that can regulate the translation of specific mRNAs. In this study, we developed an FXS human forebrain organoid model and observed that the loss of FMRP led to dysregulated neurogenesis, neuronal maturation and neuronal excitability. Bulk and single-cell gene expression analyses of FXS forebrain organoids revealed that the loss of FMRP altered gene expression in a cell-type-specific manner. The developmental deficits in FXS forebrain organoids could be rescued by inhibiting the phosphoinositide 3-kinase pathway but not the metabotropic glutamate pathway disrupted in the FXS mouse model. We identified a large number of human-specific mRNAs bound by FMRP. One of these human-specific FMRP targets, CHD2, contributed to the altered gene expression in FXS organoids. Collectively, our study revealed molecular, cellular and electrophysiological abnormalities associated with the loss of FMRP during human brain development.


Assuntos
Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/patologia , Neurogênese/genética , Prosencéfalo/patologia , Adulto , Encéfalo/patologia , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Fenômenos Eletrofisiológicos , Humanos , Masculino , Modelos Neurológicos , Neurogênese/efeitos dos fármacos , Neurônios/patologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/genética , Receptores de Glutamato Metabotrópico/efeitos dos fármacos
6.
Clin Med Insights Oncol ; 15: 11795549211028569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276234

RESUMO

Pathogenic germline mutations occurring in the BRCA1 (MIM:113705) and BRCA2 (MIM: 600185), which always result in truncated protein or nonsense-mediated mRNA decay, have been identified to increase the risk of hereditary breast, ovarian, pancreatic, prostate, and melanoma cancers. Recent studies show that BRCA1/2 germline mutations also contribute to half of all hereditary breast and ovarian cancer (HBOC). In this case series, we reported a novel frameshift mutation of the BRCA1 gene. This novel frameshift mutation occurs in exon10 of BRCA1 and may result in a lack of the serine cluster domain and BRCA1 C-terminus domain, which mediates the function of BRCA1 in DNA repair and are responsible for activation function of BRCA1. The mutation was present in a Chinese hereditary male/female breast and ovarian cancer family characterized by a high incidence of breast cancer and/or ovarian cancer among the relatives and by a high incidence of triple negative breast cancer (TNBC). Our findings speculate that BRCA1 E1148Rfs*7 mutation may be related to the occurrence of HBOC and even TNBC. Interestingly, three cases of TNBC with this novel BRCA1 mutation in this case series showed a good disease-free survival, one of them has a disease-free survival up to 7 years. Therefore, further study is required to confirm that whether this mutation is associated with good prognosis of HBOC.

7.
Cell Rep ; 34(2): 108625, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440161

RESUMO

Radiation sensitive 52 (RAD52) is an important factor for double-strand break repair (DSBR). However, deficiency in vertebrate/mammalian Rad52 has no apparent phenotype. The underlying mechanism remains elusive. Here, we report that RAD52 deficiency increased cell survival after camptothecin (CPT) treatment. CPT generates single-strand breaks (SSBs) that further convert to double-strand breaks (DSBs) if they are not repaired. RAD52 inhibits SSB repair (SSBR) through strong single-strand DNA (ssDNA) and/or poly(ADP-ribose) (PAR) binding affinity to reduce DNA-damage-promoted X-Ray Repair Cross Complementing 1 (XRCC1)/ligase IIIα (LIG3α) co-localization. The inhibitory effects of RAD52 on SSBR neutralize the role of RAD52 in DSBR, suggesting that RAD52 may maintain a balance between cell survival and genomic integrity. Furthermore, we demonstrate that blocking RAD52 oligomerization that disrupts RAD52's DSBR, while retaining its ssDNA binding capacity that is required for RAD52's inhibitory effects on SSBR, sensitizes cells to different DNA-damaging agents. This discovery provides guidance for developing efficient RAD52 inhibitors in cancer therapy.


Assuntos
Dano ao DNA , DNA Ligase Dependente de ATP/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Animais , DNA Ligase Dependente de ATP/genética , DNA de Cadeia Simples/genética , Humanos , Camundongos , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
8.
Biochem Biophys Res Commun ; 524(4): 923-928, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32057360

RESUMO

Amyloid ß (Aß) oligomers may be a real culprit in the pathogenesis of Alzheimer's disease (AD); therefore, the elimination of these toxic oligomers may be of great significance for AD therapy. Autophagy is the catabolic process by which lysosomes degrade cytosolic components, and heat shock cognate 70 kDa protein (Hsc70) binds to proteins with their KFERQ-like motifs [also known as chaperone-mediated autophagy (CMA) motifs] and carries them to lysosomes through CMA or late endosomes through endosomal microautophagy (eMI) for degradation. In this study, our strategy is to make the pathological Aß become one selective and suitable substrate for CMA and eMI (termed as Hsc70-based autophagy) by tagging its oligomers with multiple CMA motifs. First, we design and synthesize Aß oligomer binding peptides with three CMA motifs. Second, we determine that the peptide can help Aß oligomers enter endosomes and lysosomes, which can be further enhanced by ketone. More importantly, we find that the peptide can dramatically reduce Aß oligomers in induced pluripotent stem cell (iPSC) cortical neurons derived from AD patient fibroblasts and protect primary cultured cortical neurons against the Aß oligomer-induced neurotoxicity. In conclusion, we demonstrate that the peptide targeting Hsc70-based autophagy can effectively eliminate Aß oligomers and have superior neuroprotective activity.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Motivos de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Diferenciação Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Choque Térmico HSC70/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Terapia de Alvo Molecular , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/síntese química , Peptídeos/síntese química , Cultura Primária de Células , Ligação Proteica , Proteólise , Ratos , Ratos Long-Evans
9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-821903

RESUMO

@#[Abstract] Objective: To investigate the mechanisms of carnitine palmitoyltransferase 1c (CPT1c) expression to affect the proliferation and apoptosis of human thyroid papillary cancer B-CPAP cells through the AMP-dependent/activated protein kinase (AMPK) pathway in the low glucose and hypoxic conditions. Methods: Firstly,humanthyroidpapillarycarcinomaB-CPAP cells were cultured under normal condition or low glucose and hypoxic condition respectively, followed with the treatment of AMPK inhibitor compound C. Western blotting was used to detect the expressions of AMPK, p-AMPK, peroxisome proliferator-activated receptor α (PPARα) and CPT1c; the proliferation and apoptosis were detected by CCK-8 and Flow cytometry, respectively. Then PPARα-siRNA was synthesized and transfected into B-CPAP cells to knock down PPARα, and then the cells were cultured under normal or low glucose and hypoxic condition respectively.Above indicators were also detected to verify the regulation of PPARα on CPT1c. Finally, the human luciferase reporter plasmid containing CPT1c gene promoter was constructed, and the effect of PPARα on the activity of CPT1c promoter luciferase activity was observed by immunofluorescence. Results: The expressions ofAMPK, p-AMPK, PPARα and CPT1c were significantly increased in B-CPAP cells under low glucose and hypoxia condition (P<0.05 or P<0.01), while cell proliferation and apoptosis rate did not change significantly (P>0.05). After the treatment of AMPK inhibitor compound C, the expressions of p-AMPK, PPARα and CPT1c in low glucose and hypoxia group were significantly decreased (P<0.05 or P<0.01), the inhibitory rate on cell proliferation and apoptosis rate were significantly increased (P<0.05). However, the change range was smaller than that in the normal culture + compound C group (P<0.05).After PPARα knockdown, the expressions ofAMPK, p-AMPK, PPARα and CPT1c in cancer cells cultured under normal conditions were significantly decreased (P<0.05 or P<0.01), and the inhibitory rate on cell proliferation and apoptosis rate were significantly increased (P<0.05). While under low glucose and hypoxia condition, the expression of CPT1c in cells after transfection was significantly decreased (P<0.05), and the inhibition rate on cell proliferation and the apoptosis rate were significantly increased (P<0.05); However, the change range was still lower than that of normal condition group after transfection (P<0.05).After PPARα overexpression, the ratio of fluorescence in the empty vector group was not significantly different from that of the blank group (P>0.05), and the ratio of fluorescence was significantly increased in PPARα over-expression group (P<0.05). Conclusions: AMPK can increase the expression of PPARα to promote the expression of CPT1c in thyroid cancer B-CPAP cells under low glucose and hypoxia conditions, thereby inhibiting cell apoptosis and maintaining cell proliferation ability.

10.
Neuroscience ; 417: 70-80, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430527

RESUMO

Neuroinflammation in the hippocampus plays essential roles in postoperative cognitive dysfunction (POCD). Histone deacetylases (HDACs) have recently been identified as key regulators of neuroinflammation. MS-275, an inhibitor of HDAC, has been reported to have neuroprotective effects. Therefore, the present study aimed to test the hypothesis that pretreatment with MS-275 prevents POCD by inhibiting neuroinflammation in rats. In this study, anesthesia/surgery impaired cognition, demonstrated by an increase escape latency and reduction in the number of platform crossings in Morris water maze (MWM) trials, through activating microglia neuroinflammation and decreasing PSD-95 expression. However, pretreatment with MS-275 attenuated postoperative cognitive impairment severity. Furthermore, pretreatment with MS-275 decreased activated microglia levels and increased PSD95 protein expression in the hippocampus. Pretreatment with MS-275 reduced NF-κB-p65 protein expression and nuclear accumulation as well as the neuroinflammatory response (production of proinflammatory cytokines including TNF-α and IL-1ß) in the hippocampus. Additionally, MS-275 reduced HDAC2 expression and HDAC activity in the hippocampus, which were enhanced in vehicle-treated rats. These results suggest that MS-275 alleviates postoperative cognitive dysfunction by reducing neuroinflammation in the hippocampus of rats via HDAC inhibition.


Assuntos
Benzamidas/farmacologia , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Complicações Cognitivas Pós-Operatórias/tratamento farmacológico , Complicações Cognitivas Pós-Operatórias/metabolismo , Piridinas/farmacologia , Animais , Citocinas/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Inflamação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Transcrição RelA/metabolismo
12.
Curr Pharmacol Rep ; 4(3): 261-275, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34540559

RESUMO

PURPOSE OF THE REVIEW: To reason that targeting chaperone-mediated autophagy (CMA) represents a promising approach for disease therapy, we will summarize advances in researches on the relationship between CMA and diseases and discuss relevant strategies for disease therapy by targeting the CMA process. RECENT FINDINGS: CMA is a unique kind of selective autophagy in lysosomes. Under physiological conditions, CMA participates in the maintenance of cellular homeostasis by protein quality control, bioenergetics, and timely regulated specific substrate-associated cellular processes. Under pathological conditions, CMA interplays with various disease conditions. CMA makes adaptive machinery to address stress, while disease-associated proteins alter CMA which is involved in pathogeneses of diseases. As more proteins are identified as CMA substrates and regulators, dysregulation of CMA has been implicated in an increasing number of diseases, while rectifying CMA alteration may be a benefit for these diseases. SUMMARY: Alterations of CMA in diseases mainly including neurodegenerative diseases and many cancers raise the possibility of targeting CMA to recover cellular homeostasis as one potential strategy for therapy of relevant diseases.

13.
Nat Commun ; 8(1): 1763, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176575

RESUMO

Endoplasmic reticulum (ER) and lysosomes coordinate a network of key cellular processes including unfolded protein response (UPR) and autophagy in response to stress. How ER stress is signaled to lysosomes remains elusive. Here we find that ER disturbance activates chaperone-mediated autophagy (CMA). ER stressors lead to a PERK-dependent activation and recruitment of MKK4 to lysosomes, activating p38 MAPK at lysosomes. Lysosomal p38 MAPK directly phosphorylates the CMA receptor LAMP2A at T211 and T213, which causes its membrane accumulation and active conformational change, activating CMA. Loss of ER stress-induced CMA activation sensitizes cells to ER stress-induced death. Neurotoxins associated with Parkinson's disease fully engages ER-p38 MAPK-CMA pathway in the mouse brain and uncoupling it results in a greater loss of SNc dopaminergic neurons. This work identifies the coupling of ER and CMA as a critical regulatory axis fundamental for physiological and pathological stress response.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Motivos de Aminoácidos , Animais , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/química , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
Int J Mol Med ; 40(2): 389-399, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714516

RESUMO

(-)-Epigallocatechin gallate (EGCG) exerts multiple beneficial effects on cardiovascular performance. In this study, we aimed to examine the effects of EGCG on diabetic cardiomyopathy during myocardial ischemia/reperfusion (I/R) injury. EGCG (100 mg/kg/day) was administered at week 6 for 2 weeks to diabetic rats following the induction of type 1 diabetes by streptozotocin (STZ). At the end of week 8, the animals were subjected to myocardial I/R injury. The EGCG-elicited structural and functional effects were analyzed. Additionally, EGCG (20 µM) was administered for 24 h to cultured cardiac H9c2 cells under hyperglycemic conditions (30 mM glucose) prior to hypoxia/reoxygenation (H/R) challenge, and its effects on oxidative stress were compared to H9c2 cells transfecteed with silent information regulator 1 (SIRT1) small interfering RNA (siRNA). In rats with STZ-induced diabetes, EGCG treatment ameliorated post-ischemic cardiac dysfunction, decreased the myocardial infarct size, apoptosis and cardiac fibrosis, and reduced the elevated lactate dehydrogenase (LDH) and malonaldehyde (MDA) levels, and attenuated oxidative stress. Furthermore, EGCG significantly reduced H/R injury in cardiac H9c2 cells exposed to high glucose as evidenced by reduced apoptotic cell death and oxidative stress. The protein expression levels of SIRT1 and manganese superoxide dismutase (MnSOD) were reduced in the diabetic rats and the H9c2 cells under hyperglycemic conditions, compared with the control rats following I/R injury and H9c2 cells under normal glucose conditions. EGCG pre-treatment significantly upregulated the levels of htese proteins in vitro and in vivo. However, treatment with EX527 and SIRT1 siRNA blocked the EGCG-mediated cardioprotective effects. Taken together, our data indicate that SIRT1 plays a critical role in the EGCG-mediated amelioration of I/R injury in diabetic rats, which suggests that EGCG may be a promising dietary supplement for the prevention of diabetic cardiomyopathy.


Assuntos
Catequina/análogos & derivados , Hiperglicemia/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Catequina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Hiperglicemia/patologia , Masculino , Malondialdeído/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo
15.
Mol Cell ; 57(4): 721-734, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25699712

RESUMO

MicroRNAs (miRNAs) regulate the translational potential of their mRNA targets and control many cellular processes. The key step in canonical miRNA biogenesis is the cleavage of the primary transcripts by the nuclear RNase III enzyme Drosha. Emerging evidence suggests that the miRNA biogenic cascade is tightly controlled. However, little is known whether Drosha is regulated. Here, we show that Drosha is targeted by stress. Under stress, p38 MAPK directly phosphorylates Drosha at its N terminus. This reduces its interaction with DiGeorge syndrome critical region gene 8 and promotes its nuclear export and degradation by calpain. This regulatory mechanism mediates stress-induced inhibition of Drosha function. Reduction of Drosha sensitizes cells to stress and increases death. In contrast, increase in Drosha attenuates stress-induced death. These findings reveal a critical regulatory mechanism by which stress engages p38 MAPK pathway to destabilize Drosha and inhibit Drosha-mediated cellular survival.


Assuntos
Ribonuclease III/fisiologia , Estresse Fisiológico , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Transporte Ativo do Núcleo Celular , Sobrevivência Celular , Células HEK293 , Humanos , Fosforilação , Proteólise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Toxicol Lett ; 217(3): 184-91, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23296102

RESUMO

The pathologic mechanisms of Alzheimer's disease (AD) have not been fully uncovered. Acrolein, a ubiquitous dietary pollutant and by-product of oxidative stress, can induce cytotoxicity in neurons, which might play an important role in the etiology of AD. Here, we examined the effects of Acrolein on the AD pathologies in vitro and in vivo. We found Acrolein induced HT22 cells death in concentration- and time-dependent manners. Interestingly, Acrolein increased proteins' levels of amyloid precursor protein (APP), ß-secretase (BACE-1) and the amyloid ß-peptide transporter receptor for advanced glycation end products, and decreased A-disintegrin and metalloprotease (ADAM) 10 levels. In vivo, chronic oral exposure to Acrolein (2.5 mg/kg/day by intragastric gavage for 8 weeks) induced mild cognitive declination and pyknosis/atrophy of hippocampal neurons. The activity of superoxide dismutase was down-regulated while the level of malondialdehyde was up-regulated in rat brain. Moreover, Acrolein resulted in activation of astrocytes, up-regulation of BACE-1 in cortex and down-regulation of ADAM-10 in hippocampus and cortex. Taken together, our findings suggest that exposure to Acrolein induces AD-like pathology in vitro and in vivo. Scavenging Acrolein might be beneficial for the therapy of AD.


Assuntos
Acroleína/toxicidade , Doença de Alzheimer/induzido quimicamente , Encéfalo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas ADAM/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Desintegrinas/metabolismo , Imuno-Histoquímica , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos
17.
J Biol Chem ; 287(41): 34246-55, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22891246

RESUMO

Parkinson disease (PD) is characterized by the selective demise of dopaminergic (DA) neurons in the substantial nigra pars compacta. Dysregulation of transcriptional factor myocyte enhancer factor 2D (MEF2D) has been implicated in the pathogenic process in in vivo and in vitro models of PD. Here, we identified a small molecule bis(3)-cognitin (B3C) as a potent activator of MEF2D. We showed that B3C attenuated the toxic effects of neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) by activating MEF2D via multiple mechanisms. B3C significantly reduced MPP(+)-induced oxidative stress and potentiated Akt to down-regulate the activity of MEF2 inhibitor glycogen synthase kinase 3ß (GSK3ß) in a DA neuronal cell line SN4741. Furthermore, B3C effectively rescued MEF2D from MPP(+)-induced decline in both nucleic and mitochondrial compartments. B3C offered SN4741 cells potent protection against MPP(+)-induced apoptosis via MEF2D. Interestingly, B3C also protected SN4741 cells from wild type or mutant A53T α-synuclein-induced cytotoxicity. Using the in vivo PD model of C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), we showed that B3C maintained redox homeostasis, promoted Akt function activity, and restored MEF2D level in midbrain neurons. Moreover, B3C greatly prevented the loss of tyrosine hydroxylase signal in substantial nigra pars compacta DA neurons and ameliorated behavioral impairments in mice treated with MPTP. Collectedly, our studies identified B3C as a potent neuroprotective agent whose effectiveness relies on its ability to effectively up-regulate MEF2D in DA neurons against toxic stress in models of PD in vitro and in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Tacrina/análogos & derivados , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , 1-Metil-4-fenilpiridínio/efeitos adversos , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Dopaminérgicos/efeitos adversos , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/patologia , Herbicidas/efeitos adversos , Herbicidas/farmacologia , Fatores de Transcrição MEF2 , Masculino , Camundongos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Tacrina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
18.
J Agric Food Chem ; 60(33): 8171-82, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22838648

RESUMO

Baicalein, one of the major flavonoids found in Scutellaria baicalensis Georgi, displays neuroprotective effects on experimental models of Parkinson's disease (PD) in vitro and in vivo. Although the antioxidative and/or anti-inflammatory activity of baicalein likely contributes to these neuroprotective effects, other modes of action remain largely uncharacterized. In the present study, baicalein pretreatment significantly prevented cells from 6-hydroxydopamine (6-OHDA)-induced damage by attenuating cellular apoptosis. However, post-treatment with baicalein did not show any restorative effect against 6-OHDA-induced cellular damage. We found that baicalein increased transcriptional factor NF-E2-related factor 2 (Nrf2)/hemo oxygenase 1(HO-1) protein expression and decreased Kelch-like ECH-associated protein 1 (Keap1) in a time- and concentration-dependent manner in PC12 cells. In addition, baicalein induced Nrf2 nuclear translocation and enhanced antioxidant response element (ARE) transcriptional activity, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, we demonstrated that cytoprotective effects of baicalein could be attenuated by Nrf2 siRNA transfection and the HO-1 inhibitor zinc protoporphyrin (Znpp) as well as the proteasome inhibitor MG132. Furthermore, PKCα and AKT protein phosphorylation were up-regulated by baicalein pretreatment, and selective inhibitors targeted to PKC, PI3K, and AKT could block the cytoprotective effects of baicalein. Taken together, our results indicate that baicalein prevented PC12 cells from 6-OHDA-induced oxidative damage via the activation of Keap1/Nrf2/HO-1, and it also involves the PKCα and PI3K/AKT signaling pathway. Ultimately, the neuroprotective effects of baicalein may endue baicalein as a promising candidate for the prevention of PD.


Assuntos
Flavanonas/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Animais , Elementos de Resposta Antioxidante/efeitos dos fármacos , Antioxidantes/farmacologia , Citoproteção , Peptídeos e Proteínas de Sinalização Intracelular , Proteína 1 Associada a ECH Semelhante a Kelch , Leupeptinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/toxicidade , Células PC12 , Fosforilação , Inibidores de Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Protoporfirinas/farmacologia , Ratos , Regulação para Cima
19.
Neurosci Lett ; 518(1): 14-8, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22542740

RESUMO

The pathogens of Alzheimer's disease (AD) are still unclear, while accumulating evidences have indicated that both genetic and environmental factors are involved in the pathogenesis of AD. Recent studies suggest that AD is primarily a vascular disorder and copper (Cu) may play an important role in AD pathology. However, the consequences of chronic Cu exposure at the presence of other AD risk factors remain to be clarified. To investigate the effects of chronic Cu intake on cerebral hypoperfusion-induced AD pathology, Sprague-Dawley rats suffered bilateral common carotid artery occlusion (2VO) were administrated with 250 ppm copper-containing water or not. Morris water maze test showed that Cu exposure for 3 months exacerbated cognitive impairment induced by 2VO. Elevated amyloid precursor protein (APP) and beta-site APP-cleaving enzyme 1 (BACE1) expression in mRNA and protein levels were also observed in brain of Cu-exposed rats suffered 2VO. In contrast, these Cu-exacerbated changes were ameliorated after Cu was withdrawn from drinking water. In summary, our findings demonstrate that chronic Cu exposure might exacerbate AD pathology in 2VO rats.


Assuntos
Amiloide/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Cobre/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Encéfalo/patologia , Transtornos Cerebrovasculares/induzido quimicamente , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Brain Res ; 1421: 100-9, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21978549

RESUMO

The activation of N-methyl-d-aspartate (NMDA) receptors by excessive release of glutamate is involved in the pathogenesis of ischemic stroke. Thus the NMDA receptor has become an attractive therapeutic target for the development of neuroprotectants, especially from antagonists with moderate to low affinity. In the current study, NMDA receptor blockage and neuroprotective effects of bis(12)-hupyridone (B12H), a novel dimeric acetylcholinesterase inhibitor derived from a naturally occurring monomeric analog huperzine A, were investigated in vitro and in vivo. In primary rat cerebellar granule neurons, B12H (0.1 nM to 1 µM) prevented glutamate-induced apoptosis in a concentration- and time-dependent manner. Receptor-ligand binding analysis showed that B12H competed with [(3)H]MK801 with a K(i) value of 7.7 µM. In the 2-hour middle cerebral artery occlusion rat model, B12H (0.4 and 0.8 mg/kg, 30 min before-ischemia and 15 min post-ischemia, i.p.) significantly attenuated ischemia-induced apoptosis in the penumbra region, improved neurological behavior impairment, and decreased cerebral infarct volume, cerebral edema and neuronal apoptosis in the stroke model. Together, these results showed that B12H moderately blocks NMDA receptors at MK801 site and exerts neuroprotection against excitotoxic and ischemic insults in vitro and in vivo. Combined with our previous publications, we conjecture that B12H might exert neuroprotection via acting on multiple targets.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Quinolonas/farmacologia , Acetilcolinesterase/metabolismo , Animais , Apoptose/fisiologia , Cerebelo/efeitos dos fármacos , Fragmentação do DNA , Inibidores Enzimáticos/farmacologia , Marcação In Situ das Extremidades Cortadas , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...