Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 250, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066544

RESUMO

BACKGROUND: Identifying individual characteristics based on trace evidence left at a crime scene is crucial in forensic identification. Microbial communities found in fecal traces have high individual specificity and could serve as potential markers for forensic characterization. Previous research has established that predicting body type based on the relative abundance of the gut microbiome is relatively accurate. However, the long-term stability and high individual specificity of the gut microbiome are closely linked to changes at the genome level of the microbiome. No studies have been conducted to deduce body shape from genetic traits. Therefore, in this study, the vital role of gut bacterial community characteristics and genetic traits in predicting body mass index (BMI) was investigated using gut metagenomic data from a healthy Chinese population. RESULTS: Regarding the gut microbial community, the underweight group displayed increased α-diversity in comparison to the other BMI groups. There were significant differences in the relative abundances of 19 species among these three BMI groups. The BMI prediction model, based on the 31 most significant species, showed a goodness of fit (R2) of 0.56 and a mean absolute error (MAE) of 2.09 kg/m2. The overweight group exhibited significantly higher α-diversity than the other BMI groups at the level of gut microbial genes. Furthermore, there were significant variations observed in the single-nucleotide polymorphism (SNP) density of 732 contigs between these three BMI groups. The BMI prediction model, reliant on the 62 most contributing contigs, exhibited a model R2 of 0.72 and an MAE of 1.56 kg/m2. The model predicting body type from 44 contigs correctly identified the body type of 93.55% of the study participants. CONCLUSION: Based on metagenomic data from a healthy Chinese population, we demonstrated the potential of genetic traits of gut bacteria to predict an individual's BMI. The findings of this study suggest the effectiveness of a novel method for determining the body type of suspects in forensic applications using the genetic traits of the gut microbiome and holds great promise for forensic individual identification.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Metagenoma , Índice de Massa Corporal , Microbioma Gastrointestinal/genética , Bactérias/genética , Fezes/microbiologia , China
2.
Front Microbiol ; 14: 1210638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555059

RESUMO

Introduction: Personal identification of monozygotic twins (MZT) has been challenging in forensic genetics. Previous research has demonstrated that microbial markers have potential value due to their specificity and long-term stability. However, those studies would use the complete information of detected microbial communities, and low-value species would limit the performance of previous models. Methods: To address this issue, we collected 80 saliva samples from 10 pairs of MZTs at four different time points and used 16s rRNA V3-V4 region sequencing to obtain microbiota information. The data formed 280 inner-individual (Self) or MZT sample pairs, divided into four groups based on the individual relationship and time interval, and then randomly divided into training and testing sets with an 8:2 ratio. We built 12 identification models based on the time interval ( ≤ 1 year or ≥ 2 months), data basis (Amplicon sequence variants, ASVs or Operational taxonomic unit, OTUs), and distance parameter selection (Jaccard distance, Bray-Curist distance, or Hellinger distance) and then improved their identification power through genetic algorithm processes. The best combination of databases with distance parameters was selected as the final model for the two types of time intervals. Bayes theory was introduced to provide a numerical indicator of the evidence's effectiveness in practical cases. Results: From the 80 saliva samples, 369 OTUs and 1130 ASVs were detected. After the feature selection process, ASV-Jaccard distance models were selected as the final models for the two types of time intervals. For short interval samples, the final model can completely distinguish MZT pairs from Self ones in both training and test sets. Discussion: Our findings support the microbiota solution to the challenging MZT identification problem and highlight the importance of feature selection in improving model performance.

3.
Front Microbiol ; 14: 1330603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38390220

RESUMO

Background: In the field of forensic science, accurately determining occupation of an individual can greatly assist in resolving cases such as criminal investigations or disaster victim identifications. However, estimating occupation can be challenging due to the intricate relationship between occupation and various factors, including gender, age, living environment, health status, medication use, and lifestyle habits such as alcohol consumption and smoking. All of these factors can impact the composition of oral or gut microbial community of an individual. Methods and results: In this study, we collected saliva and feces samples from individuals representing different occupational sectors, specifically students and manual laborers. We then performed metagenomic sequencing on the DNA extracted from these samples to obtain data that could be analyzed for taxonomic and functional annotations in five different databases. The correlation between occupation with microbial information was assisted from the perspective of α and ß diversity, showing that individuals belonging to the two occupations hold significantly different oral and gut microbial communities, and that this correlation is basically not affected by gender, drinking, and smoking in our datasets. Finally, random forest (RF) models were built with recursive feature elimination (RFE) processes. Models with 100% accuracy in both training and testing sets were constructed based on three species in saliva samples or on a single pathway annotated by the KEGG database in fecal samples, namely, "ko04145" or Phagosome. Conclusion: Although this study may have limited representativeness due to its small sample size, it provides preliminary evidence of the potential of using microbiome information for occupational inference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...