Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139464, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37442383

RESUMO

Soil-reinforcement fibers are widely used for soil remediation and erosion prevention in ecologically vulnerable regions with sparse vegetation coverage and are incorporated into the soil for prolonged periods. However, the potential risks posed by aging fiber materials to soil health and plant growth have been largely neglected. This study explored the effects of aging solutions for polyethylene terephthalate (PET), coir, and carbon fibers on the physiological characteristics and vegetation coverage of ryegrass, as well as soil properties. Results indicated that PET and carbon fibers decreased ryegrass density and inhibited chlorophyll synthesis. All three fiber aging solutions aggravated leaf peroxidation, as represented by a sharp increase in the malondialdehyde (MDA) content. Leaf peroxidase activities improved, whereas the ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities under the carbon fiber treatment were significantly lower than those under the PET and coir fiber treatments. The three fiber aging solutions significantly reduced soil H2O2 activity, improved soil leucine aminopeptidase (LAP) activity. Besides, coir fiber aging solution improved soil hemicellulose (CB) activity significantly. Aging solutions of PET and coir fibers increased the number of soil bacterial colonies, while the carbon fiber aging solution increased the number of soil actinomyces colonies. Overall, our findings demonstrate that fiber aging solutions decrease plant density, cause leaf damage, and alter soil characteristics in the short term. However, these solutions have minimal impact on soil health. The coir fiber aging solution has minimal effects on plant growth and soil properties, and is still a viable alternative to traditional non-degradable soil-reinforcing fibers.


Assuntos
Solo , Superóxido Dismutase , Fibra de Carbono , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Carboidratos , Clorofila , Folhas de Planta , Malondialdeído
2.
Proc Biol Sci ; 290(1990): 20221963, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629101

RESUMO

Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.


Assuntos
Drosophila , Wolbachia , Animais , Masculino , Drosophila/genética , Wolbachia/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Transcriptoma , Sêmen , Espermatogênese , Citoplasma/microbiologia
3.
Front Microbiol ; 13: 892767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651499

RESUMO

Insects have a long history of being used in medicine, with clear primary and secondary functions and less side effects, and the study and exploitation of medicinal insects have received increasing attention. Insects gut microbiota and their metabolites play an important role in protecting the hosts from other potentially harmful microbes, providing nutrients, promoting digestion and degradation, and regulating growth and metabolism of the hosts. However, there are still few studies linking the medicinal values of insects with their gut microbes. In this study, we focused on the specific gut microbiota common to medicinal insects, hoping to trace the potential connection between medicinal values and gut microbes of medicinal insects. Based on 16S rRNA gene sequencing data, we compared the gut microbiota of medicinal insects [Periplaneta americana, Protaetia (Liocola) brevitarsis (Lewis) and Musca domestica], in their medicinal stages, and non-medicinal insects (Hermetia illucens L., Tenebrio molitor, and Drosophila melanogaster), and found that the intestinal microbial richness of medicinal insects was higher, and there were significant differences in the microbial community structure between the two groups. We established a model using a random-forest method to preliminarily screen out several types of gut microbiota common to medicinal insects that may play medicinal values: Parabacteroides goldsteinii, Lactobacillus dextrinicus, Bifidobacterium longum subsp. infantis (B. infantis), and Vagococcus carniphilus. In particular, P. goldsteinii and B. infantis were most probably involved in the anti-inflammatory effects of medicinal insects. Our results revealed an association between medicinal insects and their gut microbes, providing new development directions and possibly potential tools for utilizing microbes to enhance the medicinal efficacy of medicinal insects.

4.
J Genet Genomics ; 48(3): 225-236, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-34011484

RESUMO

Figs and fig pollinators are one of the few classic textbook examples of obligate pollination mutualism. The specific dependence of fig pollinators on the relatively safe living environment with sufficient food sources in the enclosed fig syconia implies that they are vulnerable to habitat changes. However, there is still no extensive genomic evidence to reveal the evolutionary footprint of this long-term mutually beneficial symbiosis in fig pollinators. In fig syconia, there are also non-pollinator species. The non-pollinator species differ in their evolutionary and life histories from pollinators. We conducted comparative analyses on 11 newly sequenced fig wasp genomes and one previously published genome. The pollinators colonized the figs approximately 66.9 million years ago, consistent with the origin of host figs. Compared with non-pollinators, many more genes in pollinators were subject to relaxed selection. Seven genes were absent in pollinators in response to environmental stress and immune activation. Pollinators had more streamlined gene repertoires in the innate immune system, chemosensory toolbox, and detoxification system. Our results provide genomic evidence for the differentiation between pollinators and nonpollinators. The data suggest that owing to the long-term adaptation to the fig, some genes related to functions no longer required are absent in pollinators.


Assuntos
Ficus , Animais , Polinização , Vespas
5.
Microb Ecol ; 82(3): 805-817, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33555369

RESUMO

Wolbachia is a genus of intracellular symbiotic bacteria that are widely distributed in arthropods and nematodes. These maternally inherited bacteria regulate host reproductive systems in various ways to facilitate their vertical transmission. Since the identification of Wolbachia in many insects, the relationship between Wolbachia and the host has attracted great interest. Numerous studies have indicated that Wolbachia modifies a variety of biological processes in the host. Previous studies in Drosophila melanogaster (D. melanogaster) have demonstrated that Wolbachia can affect spermatid differentiation, chromosome deposition, and sperm activity in the early stages of spermatogenesis, leading to sperm dysfunction. Here, we explored the putative effect of Wolbachia in sperm maturation using transcriptomic approaches to compare gene expression in Wolbachia-infected and Wolbachia-free D. melanogaster adult testes. Our findings show that Wolbachia affects many biological processes in D. melanogaster adult testes, and most of the differentially expressed genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia. In contrast, some genes that are putatively associated with cutin and wax biosynthesis and peroxisome pathways were downregulated. We did not find any differentially expressed genes that are predicted to be related to spermatogenesis in the datasets. This work provides additional information for understanding the Wolbachia-host intracellular relationships.


Assuntos
Wolbachia , Animais , Drosophila , Drosophila melanogaster/genética , Masculino , Testículo , Transcriptoma , Wolbachia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...