Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 436: 129219, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739741

RESUMO

Most investigations on organophosphate esters (OPEs) are conducted predominantly in a separate biological or abiotic medium, and few joint analyses have been performed in the mariculture ecosystem based on yearly sampling. Herein, we investigated the occurrence, load estimation, phase distribution, source diagnostics, and risks of 20 OPEs in seawater, sediment, and aquaculture organisms from a typical mariculture area in China. The total of these OPEs (∑OPEs) ranged within 3.97-1068 ng/L, 0.39-65.5 ng/g (dw), and 4.09-16.3 ng/g (ww) in seawater, sediment and organisms, respectively. Chlorinated OPEs were the predominant congeners detected in seawater, whereas alkyl-OPEs were the leading contributors in sediment and biological samples. Seasonal variations of ∑OPEs in seawater were more distinct than those in sedimentary environments. Load estimation indicated that approximately 70% of the OPEs in the study area existed in the water bodies. Source identification performed using the U.S. EPA positive matrix factorization indicated that polyurethane foam/plastics and hydraulic oil made the greatest contributions in seawater, whereas chemical production was the predominant source in sediment. Indices of ecological and health risks of OPEs were lower than their risk threshold, indicating that the OPEs detected in this study posed a low risk to the aquatic environment and human health.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Ésteres/análise , Retardadores de Chama/análise , Humanos , Organofosfatos/análise , Organofosfatos/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...