Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38351434

RESUMO

The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.

2.
Mol Ecol Resour ; 24(1): e13882, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864541

RESUMO

Transition to novel environments, such as groundwater colonization by surface organisms, provides an excellent research ground to study phenotypic evolution. However, interspecific comparative studies on evolution to groundwater life are few because of the challenge in assembling large ecological and molecular resources for species-rich taxa comprised of surface and subterranean species. Here, we make available to the scientific community an operational set of working tools and resources for the Asellidae, a family of freshwater isopods containing hundreds of surface and subterranean species. First, we release the World Asellidae database (WAD) and its web application, a sustainable and FAIR solution to producing and sharing data and biological material. WAD provides access to thousands of species occurrences, specimens, DNA extracts and DNA sequences with rich metadata ensuring full scientific traceability. Second, we perform a large-scale dated phylogenetic reconstruction of Asellidae to support phylogenetic comparative analyses. Of 424 terminal branches, we identify 34 pairs of surface and subterranean species representing independent replicates of the transition from surface water to groundwater. Third, we exemplify the usefulness of WAD for documenting phenotypic shifts associated with colonization of subterranean habitats. We provide the first phylogenetically controlled evidence that body size of males decreases relative to that of females upon groundwater colonization, suggesting competition for rare receptive females selects for smaller, more agile males in groundwater. By making these tools and resources widely accessible, we open up new opportunities for exploring how phenotypic traits evolve in response to changes in selective pressures and trade-offs during groundwater colonization.


Assuntos
Isópodes , Animais , Filogenia , Isópodes/genética , Ecossistema , DNA , Sequência de Bases
3.
Environ Microbiol Rep ; 15(2): 80-91, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36424842

RESUMO

Anthropization of Palaeolithic caves open for tourism may favour collembola invasion and result in the formation of black stains attributed to pigmented fungi. However, ecological processes underpinning black stain formation are not fully understood. Here, we tested the hypotheses that black stains from the Apse room of Lascaux Cave display a specific microbiota enriched in pigmented fungi, and that collembola thriving on the stains have the potential to consume and disseminate these black fungi. Metabarcoding showed that the microbiota of black stains and neighbouring unstained parts strongly differed, with in black stains a higher prevalence of Ochroconis and other pigmented fungi and the strong regression of Pseudomonas bacteria (whose isolates inhibited in vitro the growth of pigmented fungi). Isotopic analyses indicated that Folsomia candida collembola thriving on stains could feed on black stain in situ and assimilate the pigmented fungi they were fed with in vitro. They could carry these fungi and disseminate them when tested with complex black stains from Lascaux. This shows that black stain formation is linked to the development of pigmented fungi, which coincides with the elimination of antagonistic pseudomonads, and points towards a key role of F. candida collembola in the dynamics of pigmented fungi.


Assuntos
Artrópodes , Ascomicetos , Microbiota , Animais , Corantes , Ascomicetos/genética , DNA Fúngico
4.
Nat Commun ; 13(1): 7135, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414628

RESUMO

The biotic crisis following the end-Cretaceous asteroid impact resulted in a dramatic renewal of pelagic biodiversity. Considering the severe and immediate effect of the asteroid impact on the pelagic environment, it is remarkable that some of the most affected pelagic groups, like the planktonic foraminifera, survived at all. Here we queried a surface ocean metabarcoding dataset to show that calcareous benthic foraminifera of the clade Globothalamea are able to disperse actively in the plankton, and we show using molecular clock phylogeny that the modern planktonic clades originated from different benthic ancestors that colonized the plankton after the end-Cretaceous crisis. We conclude that the diversity of planktonic foraminifera has been the result of a constant leakage of benthic foraminifera diversity into the plankton, continuously refueling the planktonic niche, and challenge the classical interpretation of the fossil record that suggests that Mesozoic planktonic foraminifera gave rise to the modern communities.


Assuntos
Foraminíferos , Foraminíferos/genética , Plâncton/genética , Extinção Biológica , Planetas Menores , Fósseis
5.
Elife ; 92020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33252037

RESUMO

All organisms on Earth are exposed to low doses of natural radioactivity but some habitats are more radioactive than others. Yet, documenting the influence of natural radioactivity on the evolution of biodiversity is challenging. Here, we addressed whether organisms living in naturally more radioactive habitats accumulate more mutations across generations using 14 species of waterlice living in subterranean habitats with contrasted levels of radioactivity. We found that the mitochondrial and nuclear mutation rates across a waterlouse species' genome increased on average by 60% and 30%, respectively, when radioactivity increased by a factor of three. We also found a positive correlation between the level of radioactivity and the probability of G to T (and complementary C to A) mutations, a hallmark of oxidative stress. We conclude that even low doses of natural bedrock radioactivity influence the mutation rate possibly through the accumulation of oxidative damage, in particular in the mitochondrial genome.


Assuntos
Evolução Molecular , Fenômenos Geológicos , Isópodes/genética , Isópodes/efeitos da radiação , Raios Ultravioleta , Animais , Genes Mitocondriais/genética , Mutação , Filogenia
6.
Mol Ecol ; 28(14): 3383-3394, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31177607

RESUMO

Limestone areas across the world develop karstic caves, which are populated by a wide range of macro- and microorganisms. Many of these caves display Paleolithic art or outstanding speleothems, and in the last century they have been subjected to anthropization due to touristic management and intense human frequentation. Despite their cultural importance and associated conservation issues, the impact of anthropization on cave biodiversity is not known. Here, we show that anthropization is associated with specific cave biota modifications. We compared diversity in four pristine caves, four anthropized show caves, and the iconic Lascaux Cave with even stronger anthropization. The predominant microbial higher taxa were the same in all caves, but the most anthropized cave (Lascaux) was unique as it differed from the eight others by a higher proportion of Bacteroidetes bacteria and the absence of Euryarchaeota and Woesearchaeota archaea. Anthropization resulted in lower diversity and altered community structure for bacteria and archaea on cave walls, especially in Lascaux, but with a more limited effect on microeukaryotes and arthropods. Our findings fill a key gap in our understanding of the response of karstic communities to anthropization, by revealing that tourism-related anthropization impacts on the prokaryotic microbiome rather than on eukaryotic residents, and that it shapes cave biota irrespective of cave natural features.


Assuntos
Cavernas/microbiologia , Microbiota , Biodiversidade , Células Eucarióticas/metabolismo , Geografia , Humanos , Células Procarióticas/metabolismo
8.
Mol Biol Evol ; 35(12): 2900-2912, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247705

RESUMO

The rate of molecular evolution varies widely among species. Life history traits (LHTs) have been proposed as a major driver of these variations. However, the relative contribution of each trait is poorly understood. Here, we test the influence of metabolic rate (MR), longevity, and generation time (GT) on the nuclear and mitochondrial synonymous substitution rates using a group of isopod species that have made multiple independent transitions to subterranean environments. Subterranean species have repeatedly evolved a lower MR, a longer lifespan and a longer GT. We assembled the nuclear transcriptomes and the mitochondrial genomes of 13 pairs of closely related isopods, each pair composed of one surface and one subterranean species. We found that subterranean species have a lower rate of nuclear synonymous substitution than surface species whereas the mitochondrial rate remained unchanged. We propose that this decoupling between nuclear and mitochondrial rates comes from different DNA replication processes in these two compartments. In isopods, the nuclear rate is probably tightly controlled by GT alone. In contrast, mitochondrial genomes appear to replicate and mutate at a rate independent of LHTs. These results are incongruent with previous studies, which were mostly devoted to vertebrates. We suggest that this incongruence can be explained by developmental differences between animal clades, with a quiescent period during female gametogenesis in mammals and birds which imposes a nuclear and mitochondrial rate coupling, as opposed to the continuous gametogenesis observed in most arthropods.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Isópodes/genética , Características de História de Vida , Animais , Replicação do DNA , Ecossistema , Transporte de Elétrons , Isópodes/metabolismo , Isópodes/efeitos da radiação , Biossíntese de Proteínas , Seleção Genética
9.
Mol Biol Evol ; 33(10): 2605-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27401232

RESUMO

The field of stoichiogenomics aims at understanding the influence of nutrient limitations on the elemental composition of the genome, transcriptome, and proteome. The 20 amino acids and the 4 nt differ in the number of nutrients they contain, such as nitrogen (N). Thus, N limitation shall theoretically select for changes in the composition of proteins or RNAs through preferential use of N-poor amino acids or nucleotides, which will decrease the N-budget of an organism. While these N-saving mechanisms have been evidenced in microorganisms, they remain controversial in multicellular eukaryotes. In this study, we used 13 surface and subterranean isopod species pairs that face strongly contrasted N limitations, either in terms of quantity or quality. We combined in situ nutrient quantification and transcriptome sequencing to test if N limitation selected for N-savings through changes in the expression and composition of the transcriptome and proteome. No evidence of N-savings was found in the total N-budget of transcriptomes or proteomes or in the average protein N-cost. Nevertheless, subterranean species evolving in N-depleted habitats displayed lower N-usage at their third codon positions. To test if this convergent compositional change was driven by natural selection, we developed a method to detect the strand-asymmetric signature that stoichiogenomic selection should leave in the substitution pattern. No such signature was evidenced, indicating that the observed stoichiogenomic-like patterns were attributable to nonadaptive processes. The absence of stoichiogenomic signal despite strong N limitation within a powerful phylogenetic framework casts doubt on the existence of stoichiogenomic mechanisms in metazoans.


Assuntos
Isópodes/genética , Isópodes/metabolismo , Nitrogênio/deficiência , Nitrogênio/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Ecossistema , Nucleotídeos/genética , Nucleotídeos/metabolismo , Filogenia , Proteoma , Seleção Genética , Transcriptoma
10.
Syst Biol ; 65(5): 925-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27073250

RESUMO

Investigations of biodiversity, biogeography, and ecological processes rely on the identification of "species" as biologically significant, natural units of evolution. In this context, morphotaxonomy only provides an adequate level of resolution if reproductive isolation matches morphological divergence. In many groups of organisms, morphologically defined species often disguise considerable genetic diversity, which may be indicative of the existence of cryptic species. The diversity hidden by morphological species can be disentangled through genetic surveys, which also provide access to data on the ecological distribution of genetically circumscribed units. These units can be identified by unique DNA sequence motifs and allow studies of evolutionary and ecological processes at different levels of divergence. However, the nomenclature of genetically circumscribed units within morphological species is not regulated and lacks stability. This represents a major obstacle to efforts to synthesize and communicate data on genetic diversity for multiple stakeholders. We have been confronted with such an obstacle in our work on planktonic foraminifera, where the stakeholder community is particularly diverse, involving geochemists, paleoceanographers, paleontologists, and biologists, and the lack of stable nomenclature beyond the level of formal morphospecies prevents effective transfer of knowledge. To circumvent this problem, we have designed a stable, reproducible, and flexible nomenclature system for genetically circumscribed units, analogous to the principles of a formal nomenclature system. Our system is based on the definition of unique DNA sequence motifs collocated within an individual, their typification (in analogy with holotypes), utilization of their hierarchical phylogenetic structure to define levels of divergence below that of the morphospecies, and a set of nomenclature rules assuring stability. The resulting molecular operational taxonomic units remain outside the domain of current nomenclature codes, but are linked to formal morphospecies as regulated by the codes. Subsequently, we show how this system can be applied to classify genetically defined units using the SSU rDNA marker in planktonic foraminifera and we highlight its potential use for other groups of organisms where similarly high levels of connectivity between molecular and formal taxonomies can be achieved.


Assuntos
Classificação/métodos , Foraminíferos/classificação , Filogenia , Biodiversidade , DNA Ribossômico , Variação Genética , Plâncton/classificação
11.
Mol Ecol Resour ; 15(6): 1472-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25828689

RESUMO

Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent.


Assuntos
Biodiversidade , Bases de Dados de Ácidos Nucleicos , Ecossistema , Foraminíferos/classificação , Foraminíferos/genética , Filogeografia , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Plâncton/classificação , Plâncton/genética , RNA Ribossômico 18S/genética , Rhizaria , Análise de Sequência de DNA
12.
Biol Lett ; 11(3)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25762573

RESUMO

Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4-386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6-6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange.


Assuntos
DNA Mitocondrial/genética , Equidae/classificação , Fósseis , Genoma Mitocondrial , Animais , Sequência de Bases , Equidae/genética , Evolução Molecular , América do Norte , Filogenia , Análise de Sequência de DNA , América do Sul
13.
PLoS One ; 9(8): e104641, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119900

RESUMO

The use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These genetic types are usually delimitated using partial sequences located at the 3'end of the SSUrDNA, but typically based on empirical delimitation. Here, we first use patristic genetic distances calculated within and among genetic types of the most common morpho-species to show that intra-type and inter-type genetic distances within morpho-species may significantly overlap, suggesting that genetic types have been sometimes inconsistently defined. We further apply two quantitative and independent methods, ABGD (Automatic Barcode Gap Detection) and GMYC (General Mixed Yule Coalescent) to a dataset of published and newly obtained partial SSU rDNA for a more objective assessment of the species status of these genetic types. Results of these complementary approaches are highly congruent and lead to a molecular taxonomy that ranks 49 genetic types of planktonic foraminifera as genuine (pseudo)cryptic species. Our results advocate for a standardized sequencing procedure allowing homogenous delimitations of (pseudo)cryptic species. On the ground of this revised taxonomic framework, we finally provide an integrative taxonomy synthesizing geographic, ecological and morphological differentiations that can occur among the genuine (pseudo)cryptic species. Due to molecular, environmental or morphological data scarcities, many aspects of our proposed integrative taxonomy are not yet fully resolved. On the other hand, our study opens up the potential for a correct interpretation of environmental sequence datasets.


Assuntos
Evolução Molecular , Foraminíferos/classificação , Foraminíferos/genética , Variação Genética , Plâncton/genética , Subunidades Ribossômicas Menores/genética , Sequência de Bases , Biologia Marinha/métodos , Modelos Genéticos , Dados de Sequência Molecular , Paleontologia/métodos , Filogeografia , Plâncton/classificação , Análise de Sequência de DNA , Especificidade da Espécie
14.
PLoS One ; 8(9): e76213, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086709

RESUMO

Effective population size (N e) is one of the most important parameters in, ecology, evolutionary and conservation biology; however, few studies of N e in surface freshwater organisms have been published to date. Even fewer studies have been carried out in groundwater organisms, although their evolution has long been considered to be particularly constrained by small N e. In this study, we estimated the contemporary effective population size of the obligate groundwater isopod: Proaselluswalteri (Chappuis, 1948). To this end, a genomic library was enriched for microsatellite motifs and sequenced using 454 GS-FLX technology. A total of 54,593 reads were assembled in 10,346 contigs or singlets, of which 245 contained candidate microsatellite sequences with suitable priming sites. Ninety-six loci were tested for amplification, polymorphism and multiplexing properties, of which seven were finally selected for N e estimation. Linkage disequilibrium and approximate Bayesian computation methods revealed that N e in this small interstitial groundwater isopod could reach large sizes (> 585 individuals). Our results suggest that environmental conditions in groundwater, while often referred to as extreme, are not necessarily associated with small N e.


Assuntos
Água Subterrânea/parasitologia , Isópodes/genética , Repetições de Microssatélites/genética , Animais , Teorema de Bayes , Primers do DNA/genética , França , Biblioteca Genômica , Genótipo , Desequilíbrio de Ligação , Densidade Demográfica , Especificidade da Espécie
15.
Syst Biol ; 62(4): 512-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23461879

RESUMO

A key challenge for biologists is to document and explain global patterns of diversification in a wide range of environments. Here, we explore patterns of continental-scale diversification in a groundwater species-rich clade, the superfamily Aselloidea (Pancrustacea: Isopoda). Our analyses supported a constant diversification rate during most of the course of Aselloidea evolution, until 4-15 Ma when diversification rates started to decrease. This constant accumulation of lineages challenges the view that groundwater species diversification in temperate regions might have been primarily driven by major changes in physical environment leading to the extinction of surface populations and subsequent synchronous isolation of multiple groundwater populations. Rather than acting synchronously over broad geographic regions, factors causing extinction of surface populations and subsequent reproductive isolation of groundwater populations may act in a local and asynchronous manner, thereby resulting in a constant speciation rate over time. Our phylogeny also revealed several cases of parapatric distributions among closely related surface-water and groundwater species suggesting that species diversification could also arise from a process of disruptive selection along the surface-subterranean environmental gradient. Our results call for re-evaluating the spatial scale and timing of factors causing diversification events in groundwater.


Assuntos
Evolução Molecular , Isópodes/classificação , Isópodes/genética , Animais , Teorema de Bayes , Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Europa (Continente) , Evolução Planetária , Especiação Genética , Água Subterrânea , Isópodes/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Estados Unidos
16.
PLoS One ; 6(10): e26665, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028935

RESUMO

The planktonic foraminiferal morpho-species Globoconella inflata is widely used as a stratigraphic and paleoceanographic index. While G. inflata was until now regarded as a single species, we show that it rather constitutes a complex of two pseudo-cryptic species. Our study is based on SSU and ITS rDNA sequence analyses and genotyping of 497 individuals collected at 49 oceanic stations covering the worldwide range of the morpho-species. Phylogenetic analyses unveil the presence of two divergent genotypes. Type I inhabits transitional and subtropical waters of both hemispheres, while Type II is restricted to the Antarctic subpolar waters. The two genetic species exhibit a strictly allopatric distribution on each side of the Antarctic Subpolar Front. On the other hand, sediment data show that G. inflata was restricted to transitional and subtropical environments since the early Pliocene, and expanded its geographic range to southern subpolar waters ∼700 kyrs ago, during marine isotopic stage 17. This datum may correspond to a peripatric speciation event that led to the partition of an ancestral genotype into two distinct evolutionary units. Biometric measurements performed on individual G. inflata from plankton tows north and south of the Antarctic Subpolar Front indicate that Types I and II display slight but significant differences in shell morphology. These morphological differences may allow recognition of the G. inflata pseudo-cryptic species back into the fossil record, which in turn may contribute to monitor past movements of the Antarctic Subpolar Front during the middle and late Pleistocene.


Assuntos
Foraminíferos/classificação , Foraminíferos/genética , Técnicas de Genotipagem , Filogenia , Plâncton/classificação , Plâncton/genética , Biometria , DNA Espaçador Ribossômico/genética , Fósseis , Variação Genética/genética , Internacionalidade , Oceanos e Mares , Filogeografia
17.
New Phytol ; 191(4): 1141-1149, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21585390

RESUMO

External mechanical forces resulting from the pressure exerted by wind or water movement are a major stress factor for plants and may cause regular disturbances in many ecosystems. A plant's ability to resist these forces relies either on minimizing the forces encountered by the plant (avoidance strategy), or on maximizing its resistance to breakage (tolerance strategy). We investigated plant resistance strategies using aquatic vegetation as a model, and examined whether avoidance and tolerance are negatively correlated. We tested the avoidance-tolerance correlation across 28 species using a phylogenetically corrected analysis, after construction of a molecular phylogeny for the species considered. Different species demonstrated contrasting avoidance and tolerance and we demonstrated a significant negative relationship between the two strategies, which suggests an avoidance-tolerance trade-off. Negative relationships may result from costs that each strategy incurs or from constraints imposed by physical laws on plant tissues. The existence of such a trade-off has important ecological and evolutionary consequences. It would lead to constraints on the evolution and variation of both strategies, possibly limiting their evolution and may constrain many morphological, anatomical and architectural traits that underlie avoidance and tolerance.


Assuntos
Adaptação Fisiológica , Plantas/genética , Estresse Mecânico , Hidrodinâmica , Modelos Lineares , Filogenia , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Plantas/anatomia & histologia , Especificidade da Espécie
18.
Mitochondrion ; 11(2): 246-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21047564

RESUMO

Molecular tools have become prominent in ecology and evolution. A target of choice for molecular ecologists and evolutionists is mitochondrial DNA (mtDNA), whose many advantages have also convinced broad-scale, pragmatic programmes such as barcode initiatives. Of course, mtDNA is also of interest to human geneticists investigating mitochondrial diseases. Studies using mtDNA are however put at great risk by the inadvertent co-amplification or preferred amplification of nuclear pseudogenes (numts). A posteriori analysis of putative mtDNA sequences can help in removing numts but faces severe limitations (e.g. recently translocated numts will most of the time go unnoticed). Counter-measures taken a priori, i.e. explicitly designed for avoiding numt co-amplification or preferred amplification, are appealing but have never been properly assessed. Here we investigate the efficiency of four such measures (mtDNA enrichment, cDNA amplification, long-range amplification and pre-PCR dilution) on a common set of numt cases, showing that mtDNA enrichment is the worst performer while the use of pre-PCR dilution is a simple, yet robust method to prevent the pollution of putative mtDNA datasets with numts. Therefore, straightforward recommendations can be made that, if followed, will considerably increase the confidence in the mitochondrial origin of any mtDNA-like sequence.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Humanos , Reação em Cadeia da Polimerase , Pseudogenes , RNA/genética , RNA/isolamento & purificação
19.
Cell Stress Chaperones ; 15(3): 259-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19777376

RESUMO

Whereas the consequences of global warming at population or community levels are well documented, studies at the cellular level are still scarce. The study of the physiological or metabolic effects of such small increases in temperature (between +2 degrees C and +6 degrees C) is difficult because they are below the amplitude of the daily or seasonal thermal variations occurring in most environments. In contrast, subterranean biotopes are highly thermally buffered (+/-1 degrees C within a year), and underground water organisms could thus be particularly well suited to characterise cellular responses of global warming. To this purpose, we studied genes encoding chaperone proteins of the HSP70 family in amphipod crustaceans belonging to the ubiquitous subterranean genus Niphargus. An HSP70 sequence was identified in eight populations of two complexes of species of the Niphargus genus (Niphargus rhenorhodanensis and Niphargus virei complexes). Expression profiles were determined for one of these by reverse transcription and quantitative polymerase chain reaction, confirming the inducible nature of this gene. An increase in temperature of 2 degrees C seemed to be without effect on N. rhenorhodanensis physiology, whereas a heat shock of +6 degrees C represented an important thermal stress for these individuals. Thus, this study shows that although Niphargus individuals do not undergo any daily or seasonal thermal variations in underground water, they display an inducible HSP70 heat shock response. This controlled laboratory-based physiological experiment constitutes a first step towards field investigations of the cellular consequences of global warming on subterranean organisms.


Assuntos
Anfípodes , Aquecimento Global , Efeito Estufa , Proteínas de Choque Térmico HSP70/metabolismo , Abastecimento de Água , Sequência de Aminoácidos , Anfípodes/genética , Anfípodes/metabolismo , Animais , Sequência de Bases , Expressão Gênica , Proteínas de Choque Térmico HSP70/classificação , Proteínas de Choque Térmico HSP70/genética , Humanos , Dados de Sequência Molecular , Filogenia , RNA/análise , Alinhamento de Sequência
20.
J Exp Biol ; 212(Pt 12): 1859-68, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19483004

RESUMO

Subterranean environments are characterized by the quasi absence of thermal variations (+/-1 degrees C within a year), and organisms living in these biotopes for several millions of years, such as hypogean crustaceans, can be expected to have adapted to this very stable habitat. As hypogean organisms experience minimal thermal variation in their native biotopes, they should not be able to develop any particular cold adaptations to cope with thermal fluctuations. Indeed, physiological responses of organisms to an environmental stress are proportional to the amplitude of the stress they endure in their habitats. Surprisingly, previous studies have shown that a population of an aquatic hypogean crustacean, Niphargus rhenorhodanensis, exhibited a high level of cold hardiness. Subterranean environments thus appeared not to be following the classical above-mentioned theory. To confirm this counter-example, we studied seven karstic populations of N. rhenorhodanensis living in aquifers at approximately 10 degrees C all year round and we analysed their behavioural, metabolic and biochemical responses during cold exposure (3 degrees C). These seven populations showed reduced activities, and some cryoprotective molecules were accumulated. More surprisingly, the amplitude of the response varied greatly among the seven populations, despite their exposure to similar thermal conditions. Thus, the overall relationship that can be established between the amplitude of thermal variations and cold-hardiness abilities of ectotherm species may be more complex in subterranean crustaceans than in other arthropods.


Assuntos
Aclimatação/fisiologia , Anfípodes/metabolismo , Temperatura Baixa , Anfípodes/fisiologia , Animais , Ecossistema , Ácido Láctico/metabolismo , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...