Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(5): 670-679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413809

RESUMO

Fast charging is a critical concern for the next generation of electrochemical energy storage devices, driving extensive research on new electrode materials for electrochemical capacitors and micro-supercapacitors. Here we introduce a significant advance in producing thick ruthenium nitride pseudocapacitive films fabricated using a sputter deposition method. These films deliver over 0.8 F cm-2 (~500 F cm-3) with a time constant below 6 s. By utilizing an original electrochemical oxidation process, the volumetric capacitance doubles (1,200 F cm-3) without sacrificing cycling stability. This enables an extended operating potential window up to 0.85 V versus Hg/HgO, resulting in a boost to 3.2 F cm-2 (3,200 F cm-3). Operando X-ray absorption spectroscopy and transmission electron microscopy analyses reveal novel insights into the electrochemical oxidation process. The charge storage mechanism takes advantage of the high electrical conductivity and the morphology of cubic ruthenium nitride and Ru phases in the feather-like core, leading to high electrical conductivity in combination with high capacity. Accordingly, we have developed an analysis that relates capacity to time constant as a means of identifying materials capable of retaining high capacity at high charge/discharge rates.

2.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770682

RESUMO

By selecting two electroactive species immobilized in a layered double hydroxide backbone (LDH) host, one able to act as a positive electrode material and the other as a negative one, it was possible to match their capacity to design an innovative energy storage device. Each electrode material is based on electroactive species, riboflavin phosphate (RF) on one side and ferrocene carboxylate (FCm) on the other, both interleaved into a layered double hydroxide (LDH) host structure to avoid any possible molecule migration and instability. The intercalation of the electroactive guest molecules is demonstrated by X-ray diffraction with the observation of an interlayer LDH spacing of about 2 nm in each case. When successfully hosted into LDH interlayer space, the electrochemical behavior of each hybrid assembly was scrutinized separately in aqueous electrolyte to characterize the redox reaction occurring upon cycling and found to be a rapid faradic type. Both electrode materials were placed face to face to achieve a new aqueous battery (16C rate) that provides a first cycle-capacity of about 7 mAh per gram of working electrode material LDH/FCm at 10 mV/s over a voltage window of 2.2 V in 1M sodium acetate, thus validating the hybrid LDH host approach on both electrode materials even if the cyclability of the assembly has not yet been met.

3.
Materials (Basel) ; 14(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205882

RESUMO

The purpose of this study is to highlight the influence of some fabrication parameters, such as mass loading and porosity, which are not really elucidated and standardized during the realization of electrodes for supercapacitors, especially when using metal oxides as electrode materials. Electrode calendering, as one stage during the fabrication of electrodes, was carried out step-by-step on manganese dioxide electrodes to study the decreasing porosity effect on the electrochemical performance of a MnO2 symmetric device. One other crucial parameter, the mass loading, which has to be understood and well used for realistic supercapacitors, was investigated concurrently. Gravimetric, areal and volumetric capacitances are highlighted, varying the porosity for low-, medium- and large-mass loading. Low-loading leads to the best specific capacitances but is not credible for realistic supercapacitors, except for microdevices. Down 50% porosities after calendering, capacitances are increased and become stable faster, suggesting a faster wettability of the dense electrodes by the electrolyte, especially for high-mass loading. EIS experiments performed on electrodes without and with calendering lead to a significant decrease of the device's time response, especially at high loading. A high-mass loading device seems to work as a power battery, whereas electrode calendaring, which allows decreasing the time response, leads to an electrical behavior closer to that expected for a supercapacitor.

4.
Small ; 16(33): e2002855, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32656960

RESUMO

In nanosized FeWO4 electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. In order to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy is successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments are obtained in real time upon cycling the electrode, which allows investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L3 -edge measurements point out the involvement of the Fe3+ /Fe2+ redox couple in the charge storage while W6+ acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO4 . Beside these valuable insights toward the full description of the charge storage mechanism in FeWO4 , this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...