Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(1): 231529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204792

RESUMO

Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.

2.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220004, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744563

RESUMO

Insects are under pressure from agricultural intensification. To protect pollinators, conservation measures such as the EU agri-environment schemes (AES) promote planting wildflowers along fields. However, this can potentially alter disease ecology by serving as transmission hubs or by diluting infections. We tested this by measuring plant-pollinator interactions and virus infections (DWV-A, DWV-B and ABPV) across pollinator communities in agricultural landscapes over a year. AES had a direct effect on DWV-B, reducing prevalence and load in honeybees, with a tentative general dilution effect on load in early summer. DWV-A prevalence was reduced both under AES and with increasing niche overlap between competent hosts, likely via a dilution effect. By contrast, AES had no impact on ABPV, its prevalence driven by the proportion of bumblebees in the community. Epidemiological differences were also reflected in the virus phylogenies, with DWV-B showing recent rapid expansion, while DWV-A and ABPV showed slower growth rates and geographical population structure. Phylogenies indicate that all three viruses freely circulate across their host populations. Our study illustrates how complex interactions between environmental, ecological and evolutionary factors may influence wildlife disease dynamics. Supporting pollinator nutrition can mitigate the transmission of important bee diseases, providing an unexpected boost to pollinator conservation. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Assuntos
Polinização , Vírus de RNA , Animais , Abelhas , Prevalência , Animais Selvagens , Insetos , Agricultura
3.
Open Biol ; 13(3): 230025, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36854375

RESUMO

Genetic variation for resistance and disease tolerance has been described in a range of species. In Drosophila melanogaster, genetic variation in mortality following systemic Drosophila C virus (DCV) infection is driven by large-effect polymorphisms in the restriction factor pastrel (pst). However, it is unclear if pst contributes to disease tolerance. We investigated systemic DCV challenges spanning nine orders of magnitude, in males and females of 10 Drosophila Genetic Reference Panel lines carrying either a susceptible (S) or resistant (R) pst allele. We find among-line variation in fly survival, viral load and disease tolerance measured both as the ability to maintain survival (mortality tolerance) and reproduction (fecundity tolerance). We further uncover novel effects of pst on host vigour, as flies carrying the R allele exhibited higher survival and fecundity even in the absence of infection. Finally, we found significant genetic variation in the expression of the JAK-STAT ligand upd3 and the epigenetic regulator of JAK-STAT G9a. However, while G9a has been previously shown to mediate tolerance of DCV infection, we found no correlation between the expression of either upd3 or G9a on fly tolerance or resistance. Our work highlights the importance of both resistance and tolerance in viral defence.


Assuntos
Drosophila melanogaster , Drosophila , Feminino , Masculino , Animais , Carga Viral , Drosophila melanogaster/genética , Alelos , Polimorfismo Genético
4.
Ecol Evol ; 12(10): e9442, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311409

RESUMO

Ecological restoration programs are established to reverse land degradation, mitigate biodiversity loss, and reinstate ecosystem services. Following recent agricultural intensification that led to a decrease in flower diversity and density in rural areas and subsequently to the decline of many insects, conservation measures targeted at pollinators have been established, including sown wildflower strips (WFS) along field margins. Historically successful in establishing a high density of generalist bees and increasing pollinator diversity, the impact of enhanced flower provision on wider ecological interactions and the structure of pollinator networks has been rarely investigated. Here, we tested the effects of increasing flower species richness and flower density in agricultural landscapes on bee-plant interaction networks. We measured plant species richness and flower density and surveyed honeybee and bumblebee visits on flowers across a range of field margins on 10 UK farms that applied different pollinator conservation measures. We found that both flower species richness and flower density significantly increased bee abundance, in early and late summer, respectively. At the network level, we found that higher flower species richness did not significantly alter bee species' generality indices, but significantly reduced network connectance and marginally reduced niche overlap across honeybees and bumblebee species, a proxy for insect competition. While higher connectance and niche overlap is believed to strengthen network robustness and often is the aim for the restoration of pollinator networks, we argue that carefully designed WFS may benefit bees by partitioning their foraging niche, limiting competition for resources and the potential for disease transmission via shared floral use. We also discuss the need to extend WFS and their positive effects into spring when wild bee populations are established.

5.
Virol J ; 19(1): 12, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033134

RESUMO

In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas , Vírus de DNA , Egito , Vírus de RNA/genética
6.
Amino Acids ; 53(10): 1545-1558, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34590185

RESUMO

The ratio of amino acids to carbohydrates (AA:C) that bumble bees consume has been reported to affect their survival. However, it is unknown how dietary AA:C ratio affects other bumble bee fitness traits (e.g., fecundity, condition) and possible trade-offs between them. Moreover, while individual AAs affect phenotype in many species, the effects of AA blend on bumble bee fitness and food intake are unclear. We test how the AA:C ratio that bumble bees (Bombus terrestris) consume affects their condition (abdomen lipid and dry mass), survival following food removal, and ovarian activation. We then compare ovarian activation and food intake in bees fed identical AA:C ratios, but where the blend of AAs in diets differ, i.e., diets contained the same 10 AAs in an equimolar ratio or in the same ratio as in bee collected pollen. We found that AA:C ratio did not significantly affect survival following food removal or ovarian activation; however, high AA intake increased body mass, which is positively correlated with multiple fitness traits in bumble bees. AA blend (i.e., equimolar versus pollen) did not significantly affect overall ovarian activation or consumption of each experimental diet. However, there was an interaction between AA mix and dietary AA:C ratio affecting survival during the feeding experiment, and signs that there may have been weak, interactive effects of AA mix and AA:C ratio on food consumption. These results suggest that the effect of total AA intake on bumble bee phenotype may depend on the blend of individual AAs in experimental diets. We suggest that research exploring how AA blend affects bumble bee performance and dietary intake is warranted, and highlight that comparing research on bee nutrition is complicated by even subtle variation in experimental diet composition.


Assuntos
Aminoácidos/farmacologia , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Abelhas/fisiologia , Ração Animal , Animais , Composição Corporal/efeitos dos fármacos , Carboidratos/farmacologia , Ingestão de Alimentos , Feminino , Aptidão Genética , Ovário/fisiologia
7.
J Invertebr Pathol ; 186: 107506, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33249062

RESUMO

The OneHealth approach aims to further our understanding of the drivers of human, animal and environmental health, and, ultimately, to improve them by combining approaches and knowledge from medicine, biology and fields beyond. Wild and managed bees are essential pollinators of crops and wild flowers. Their health thus directly impacts on human and environmental health. At the same time, these bee species represent highly amenable and relevant model organisms for a OneHealth approach that aims to study fundamental epidemiological questions. In this review, we focus on how infectious diseases of wild and managed bees can be used as a OneHealth model system, informing fundamental questions on ecological immunology and disease transmission, while addressing how this knowledge can be used to tackle the issues facing pollinator health.


Assuntos
Criação de Abelhas , Abelhas/microbiologia , Abelhas/parasitologia , Animais , Abelhas/virologia , Saúde Única
8.
Insects ; 11(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290327

RESUMO

In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.

9.
Viruses ; 11(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699904

RESUMO

Deformed wing virus (DWV) is an emerging infectious disease of the honey bee (Apis mellifera) that is considered a major cause of elevated losses of honey bee colonies. DWV comprises two widespread genotypes: the originally described genotype A, and genotype B. In adult honey bees, DWV-B has been shown to be more virulent than DWV-A. However, their comparative effects on earlier host developmental stages are unknown. Here, we experimentally inoculated honey bee pupae and tested for the relative impact of DWV-A versus DWV-B on mortality and wing deformities in eclosing adults. DWV-A and DWV-B caused similar, and only slightly elevated, pupal mortality (mean 18% greater mortality than control). Both genotypes caused similarly high wing deformities in eclosing adults (mean 60% greater wing deformities than control). Viral titer was high in all of the experimentally inoculated eclosing adults, and was independent of wing deformities, suggesting that the phenotype 'deformed wings' is not directly related to viral titer or viral genotype. These viral traits favor the emergence of both genotypes of DWV by not limiting the reproduction of its vector, the ectoparasitic Varroa destructor mite, in infected pupae, and thereby facilitating the spread of DWV in honey bees infested by the mite.


Assuntos
Abelhas/virologia , Genótipo , Pupa/virologia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/genética , Asas de Animais/patologia , Animais , Vírus de RNA/patogenicidade , Carga Viral , Asas de Animais/virologia
10.
Sci Rep ; 7(1): 5242, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701778

RESUMO

Bees are considered to be threatened globally, with severe overwinter losses of the most important commercial pollinator, the Western honeybee, a major concern in the Northern Hemisphere. Emerging infectious diseases have risen to prominence due to their temporal correlation with colony losses. Among these is Deformed wing virus (DWV), which has been frequently linked to colony mortality. We now provide evidence of a strong statistical association between overwintering colony decline in the field and the presence of DWV genotype-B (DWV-B), a genetic variant of DWV that has recently been shown to be more virulent than the original DWV genotype-A. We link the prevalence of DWV-B directly to a quantitative measure of overwinter decline (workforce mortality) of honeybee colonies in the field. We demonstrate that increased prevalence of virus infection in individual bees is associated with higher overwinter mortality. We also observed a substantial reduction of infected colonies in the spring, suggesting that virus-infected individuals had died during the winter. Our findings demonstrate that DWV-B, plus possible A/B recombinants exhibiting DWV-B at PCR primer binding sites, may be a major cause of elevated overwinter honeybee loss. Its potential emergence in naïve populations of bees may have far-reaching ecological and economic impacts.


Assuntos
Abelhas/virologia , Colapso da Colônia/virologia , Variação Genética , Interações Hospedeiro-Patógeno/genética , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Animais , Genótipo , Vírus de RNA/patogenicidade , Carga Viral , Virulência
12.
BMC Genomics ; 18(1): 207, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249569

RESUMO

BACKGROUND: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.


Assuntos
Abelhas/genética , Interações Hospedeiro-Patógeno/genética , Animais , Abelhas/microbiologia , Abelhas/parasitologia , Abelhas/virologia , Bases de Dados Genéticas , Evolução Molecular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Imunidade Inata/genética , Anotação de Sequência Molecular , Nosema/fisiologia , Vírus de RNA/fisiologia , Varroidae/fisiologia
13.
Genom Data ; 10: 79-82, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27747157

RESUMO

Regulation of gene expression in the brain plays an important role in behavioral plasticity and decision making in response to external stimuli. However, both can be severely affected by environmental factors, such as parasites and pathogens. In honey bees, the emergence and re-emergence of pathogens and potential for pathogen co-infection and interaction have been suggested as major components that significantly impaired social behavior and survival. To understand how the honey bee is affected and responds to interacting pathogens, we co-infected workers with two prevalent pathogens of different nature, the positive single strand RNA virus Black queen cell virus (BQCV), and the Microsporidia Nosema ceranae, and explored gene expression changes in brains upon single infections and co-infections. Our data provide an important resource for research on honey bee diseases, and more generally on insect host-pathogen and pathogen-pathogen interactions. Raw and processed data are publicly available in the NCBI/GEO database: (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE81664.

14.
Proc Biol Sci ; 283(1833)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27358367

RESUMO

Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline.


Assuntos
Abelhas/virologia , Vírus de Insetos/patogenicidade , Virulência , Animais , Genoma Viral , Genótipo , Vírus de Insetos/genética
15.
mBio ; 7(2): e02164-15, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118586

RESUMO

As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.


Assuntos
Bactérias/genética , Abelhas/microbiologia , Abelhas/fisiologia , Evolução Biológica , Microbiota , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Abelhas/genética , Polinização , Simbiose
16.
RNA Biol ; 12(10): 1159-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26361137

RESUMO

A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial , RNA de Transferência/genética , Animais , Crustáceos/genética , Regulação da Expressão Gênica
17.
Environ Microbiol ; 17(4): 969-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25611325

RESUMO

Microbial pathogens are thought to have a profound impact on insect populations. Honey bees are suffering from elevated colony losses in the northern hemisphere possibly because of a variety of emergent microbial pathogens, with which pesticides may interact to exacerbate their impacts. To reveal such potential interactions, we administered at sublethal and field realistic doses one neonicotinoid pesticide (thiacloprid) and two common microbial pathogens, the invasive microsporidian Nosema ceranae and black queen cell virus (BQCV), individually to larval and adult honey bees in the laboratory. Through fully crossed experiments in which treatments were administered singly or in combination, we found an additive interaction between BQCV and thiacloprid on host larval survival likely because the pesticide significantly elevated viral loads. In adult bees, two synergistic interactions increased individual mortality: between N. ceranae and BQCV, and between N. ceranae and thiacloprid. The combination of two pathogens had a more profound effect on elevating adult mortality than N. ceranae plus thiacloprid. Common microbial pathogens appear to be major threats to honey bees, while sublethal doses of pesticide may enhance their deleterious effects on honey bee larvae and adults. It remains an open question as to whether these interactions can affect colony survival.


Assuntos
Abelhas , Dicistroviridae/patogenicidade , Nosema/patogenicidade , Praguicidas/farmacologia , Piridinas/farmacologia , Tiazinas/farmacologia , Animais , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Abelhas/virologia , Larva/efeitos dos fármacos , Larva/microbiologia , Larva/virologia , Estágios do Ciclo de Vida , Neonicotinoides
18.
Proc Biol Sci ; 282(1798): 20141896, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25429014

RESUMO

There is increasing appreciation that hosts in natural populations are subject to infection by multiple parasite species. Yet the epidemiological and ecological processes determining the outcome of mixed infections are poorly understood. Here, we use two intracellular gut parasites (Microsporidia), one exotic and one co-evolved in the western honeybee (Apis mellifera), in an experiment in which either one or both parasites were administered either simultaneously or sequentially. We provide clear evidence of within-host competition; order of infection was an important determinant of the competitive outcome between parasites, with the first parasite significantly inhibiting the growth of the second, regardless of species. However, the strength of this 'priority effect' was highly asymmetric, with the exotic Nosema ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an unusual asymmetry in parasite competition that is dependent on order of infection. When incorporated into a mathematical model of disease prevalence, we find asymmetric competition to be an important predictor of the patterns of parasite prevalence found in nature. Our findings demonstrate the wider significance of complex multi-host-multi-parasite interactions as drivers of host-pathogen community structure.


Assuntos
Abelhas/parasitologia , Interações Hospedeiro-Parasita , Espécies Introduzidas , Nosema/fisiologia , Animais , Intestinos/parasitologia , Especificidade da Espécie
19.
J Invertebr Pathol ; 124: 31-4, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450738

RESUMO

Two pathogens co-infecting a common host can either interact positively (facilitation), negatively (competition) or act independently. A correlative study has suggested that two pathogens of the honey bee, Nosema ceranae and Deformed wing virus (DWV), interact negatively within a host (Costa et al., 2011). To test this hypothesis, we sequentially co-infected honey bees with these pathogens in a reciprocally crossed experimental design. Prior establishment in the host ventriculus by N. ceranae inhibited DWV while prior infection by DWV did not impact N. ceranae, highlighting an asymmetry in the competitive interaction between these emerging pathogens.


Assuntos
Abelhas/parasitologia , Interações Hospedeiro-Patógeno , Vírus de Insetos/fisiologia , Nosema/fisiologia , Animais , Abelhas/virologia
20.
J Econ Entomol ; 107(1): 54-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24665684

RESUMO

The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level ofvitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiments.


Assuntos
Criação de Abelhas/instrumentação , Abelhas , Métodos de Alimentação , Animais , Abelhas/metabolismo , Dieta , Veias , Vitelogeninas/metabolismo , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...