Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(3): 1287-1293, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044780

RESUMO

Graphene and other single-layer structures are pursued as high-flux separation membranes, although imparting porosity endangers their crystalline integrity. In contrast, bilayer silica composed of corner-sharing (SiO4) units is foreseen to be permeable for small molecules due to its intrinsic lattice openings. This study sheds light on the mass transport properties of freestanding 2D SiO2 upon using atomic layer deposition (ALD) to grow large-area films on Au/mica substrates followed by transfer onto Si3N4 windows. Permeation experiments with gaseous and vaporous substances reveal the suspended material to be porous, but the membrane selectivity appears to diverge from the size exclusion principle. Whereas the passage of inert gas molecules is hindered with a permeance below 10-7 mol·s-1·m-2·Pa-1, condensable species like water are found to cross vitreous bilayer silica a thousand times faster in accordance with their superficial affinity. This work paves the way for bilayer oxides to be addressed as inherent 2D membranes.


Assuntos
Grafite , Dióxido de Silício , Gases/química , Óxidos , Porosidade , Dióxido de Silício/química
2.
J Chem Phys ; 154(20): 204703, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241167

RESUMO

In catalysis, MgO is often used to modify the acid-base properties of support oxides and to stabilize supported metal atoms and particles on oxides. In this study, we show how the sublimation of MgO powder can be used to deposit MgO monomers, hither on anatase TiO2(101). A combination of x-ray electron spectroscopy, high-resolution scanning tunneling microscopy, and density functional theory is employed to gain insight into the MgO monomer binding, electronic and vibrational properties, and thermal stability. In the most stable configuration, the Mg and O of the MgO monomer bind to two surface oxygens and one undercoordinated surface titanium, respectively. The additional binding weakens the Mg-O monomer bond and makes Mg more ionic. The monomers are thermally stable up to 600 K, where the onset of diffusion into the TiO2 bulk is observed. The monomeric MgO species on TiO2(101) represent an ideal atomically precise system with modified acid-base properties and will be employed in our future catalytic studies.

3.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472974

RESUMO

Hierarchically ordered oxides are of critical importance in material science and catalysis. Unfortunately, the design and synthesis of such systems remains a key challenge to realizing their potential. In this study, we demonstrate how the deposition of small oligomeric (MoO3)1-6 clusters-formed by the facile sublimation of MoO3 powders-leads to the self-assembly of locally ordered arrays of immobilized mono-oxo (MoO3)1 species on anatase TiO2(101). Using both high-resolution imaging and theoretical calculations, we reveal the dynamic behavior of the oligomers as they spontaneously decompose at room temperature, with the TiO2 surface acting as a template for the growth of this hierarchically structured oxide. Transient mobility of the oligomers on both bare and (MoO3)1-covered TiO2(101) areas is identified as key to the formation of a complete (MoO3)1 overlayer with a saturation coverage of one (MoO3)1 per two undercoordinated surface Ti sites. Simulations reveal a dynamic coupling of the reaction steps to the TiO2 lattice fluctuations, the absence of which kinetically prevents decomposition. Further experimental and theoretical characterizations demonstrate that (MoO3)1 within this material are thermally stable up to 500 K and remain chemically identical with a single empty gap state produced within the TiO2 band structure. Finally, we see that the constituent (MoO3)1 of this material show no proclivity for step and defect sites, suggesting they can reliably be grown on the (101) facet of TiO2 nanoparticles without compromising their chemistry.

4.
J Chem Phys ; 152(6): 064703, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061207

RESUMO

The interaction of methanol with iron oxide surfaces is of interest due to its potential in hydrogen storage and from a fundamental perspective as a chemical probe of reactivity. We present here a study examining the adsorption and reaction of methanol on magnetite Fe3O4(001) at cryogenic temperatures using a combination of temperature programmed desorption, x-ray photoelectron spectroscopy, and scanning tunneling microscopy. The methanol desorption profile from Fe3O4(001) is complex, exhibiting peaks at 140 K, 173 K, 230 K, and 268 K, corresponding to the desorption of intact methanol, as well as peaks at 341 K and 495 K due to the reaction of methoxy intermediates. The saturation of a monolayer of methanol corresponds to ∼5 molecules/unit cell (u.c.), which is slightly higher than the number of surface octahedral iron atoms of 4/u.c. We probe the kinetics and thermodynamics of the desorption of molecular methanol using inversion analysis. The deconvolution of the complex desorption profile into individual peaks allows for calculations of both the desorption energy and the prefactor of each feature. The initial 0.7 methanol/u.c. reacts to form methoxy and hydroxy intermediates at 180 K, which remain on the surface above room temperature after intact methanol has desorbed. The methoxy species react via one of two channels, a recombination reaction with surface hydroxyls to form additional methanol at ∼350 K and a disproportionation reaction to form methanol and formaldehyde at ∼500 K. Only 20% of the methoxy species undergo the disproportionation reaction, with most of them reacting via the 350 K pathway.

5.
Langmuir ; 33(1): 91-99, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27996271

RESUMO

We present a combined vibrational and morphological characterization of the self-assembly of 1,4-phenylene-diisocyanide (PDI) on Au(111) from methanol solution. Vibrational sum frequency generation (vSFG) and scanning tunneling microscopy (STM) have been applied to determine the adsorption geometry of the PDI-Au adatom complexes as well as the morphological transformations of the Au(111) substrate upon SAM formation from solutions with PDI concentrations in the µM to mM range. At low concentration/coverage, PDI adsorbs in flat adsorption geometry, with both isocyanide groups attached to Au adatoms on the Au(111) surface. Transformation to a standing-up phase is observed with increasing concentration/coverage. In contrast to findings for PDI adsorbed in ultrahigh vacuum, PDI does not form a long-range-ordered monolayer phase when adsorbed from solution. In addition, the Au(111) surface is subjected to structural modifications. Au vacancy islands and ad-islands, which are typical substrate defects formed during the self-assembly of aromatic thiols on Au(111), are also created during PDI adsorption from solution. At low PDI concentration, the Au vacancy islands and ad-islands are found at specific sites mediated by the herringbone reconstruction of the Au(111) surface, giving rise to long-range-ordered structures. These structures do not form during UHV adsorption of PDI on Au(111) nor has a similar ordering effect been observed for any related thiol-SAM system investigated so far.

6.
J Phys Chem Lett ; 7(7): 1303-9, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26988695

RESUMO

An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu-O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state.


Assuntos
Cério/química , Cobre/química , Adsorção , Modelos Moleculares , Oxirredução , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...