Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci ; 349: 108834, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598641

RESUMO

The Hantaviridae constitute a family of viruses harbored by mice, rats, shrews, voles, moles and bats. Intriguingly, only viruses harbored by mice and rats may cause disease in humans with up to 40% case fatality rate in the Americas. Transmission of virus from rodents to humans occurs via the respiratory route and results in replication of the virus in the microvascular endothelial cells of the lung or kidney. Understanding the replication kinetics of these viruses in various cell types and how replication is abrogated by the host is critical to the development of effective therapeutics for treatment for which there are none. We formulate several new ordinary differential equation (ODE) models to examine the replication kinetics of Prospect Hill orthohantavirus (PHV). The models are distinguished by the distribution of the viral replication delay. A new threshold, RGE, the genome equivalent replication number, is defined in terms of the model parameters. New final density relations are derived that associate RGE to the asymptotic number of virions in each model. All models are fit to real time (qRT)-PCR data of genomic RNA from PHV released from Vero E6 cells over 192 h. A sensitivity analysis of the parameters is performed and models are tested for best fit. Our findings provide a basis for future research into formulating more complex mathematical models for evaluation of the replication of hantaviruses in various cell types and sources.


Assuntos
Células Endoteliais , Orthohantavírus , Animais , Chlorocebus aethiops , Orthohantavírus/genética , Cinética , Camundongos , Ratos , Células Vero , Replicação Viral
2.
Circ Arrhythm Electrophysiol ; 15(3): e010636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35212578

RESUMO

BACKGROUND: With aging, the human atrium invariably develops amyloid composed of ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide). Preamyloid oligomers are the primary cytotoxic species in amyloidosis, and they accumulate in the atrium during human hypertension and a murine hypertensive model of atrial fibrillation susceptibility. We tested the hypothesis that preamyloid oligomers derived from natriuretic peptides cause cytotoxic and electrophysiological effects in atrial cells that promote arrhythmia susceptibility and that oligomer formation is enhanced for a mutant form of ANP linked to familial atrial fibrillation. METHODS: Oligomerization was assessed by Western blot analysis. Bioenergic profiling was performed using the Seahorse platform. Mitochondrial dynamics were investigated with immunostaining and gene expression quantitated using quantitative reverse transcription polymerase chain reaction. Action potentials and ionic currents were recorded using patch-clamp methods and intracellular calcium measured using Fura-2. RESULTS: Oligomer formation was markedly accelerated for mutant ANP (mutANP) compared with WT (wild type) ANP. Oligomers derived from ANP, BNP, and mutANP suppressed mitochondrial function in atrial HL-1 cardiomyocytes, associated with increased superoxide generation and reduced biogenesis, while monomers had no effects. In hypertensive mice, atrial cardiomyocytes displayed reduced action potential duration and maximal dV/dT of phase 0, with an elevated resting membrane potential, compared with normotensive mice. Similar changes were observed when atrial cells were exposed to oligomers. mutANP monomers produced similar electrophysiological effects as mutANP oligomers, likely due to accelerated oligomer formation, while ANP and BNP monomers did not. Oligomers decreased Na+ current, inward rectifier K+ current, and L-type Ca++ current, while increasing sustained and transient outward K+ currents, to account for these effects. CONCLUSIONS: These findings provide compelling evidence that natriuretic peptide oligomers are novel mediators of atrial arrhythmia susceptibility. Moreover, the accelerated oligomerization by mutANP supports a role for these mediators in the pathophysiology of this mutation in atrial fibrillation.


Assuntos
Fibrilação Atrial , Fator Natriurético Atrial , Animais , Fibrilação Atrial/etiologia , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Fator Natriurético Atrial/farmacologia , Átrios do Coração , Camundongos , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...