Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 10(2): 163-77, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22221333

RESUMO

Hopanes preserved in both modern and ancient sediments are recognized as the molecular fossils of bacteriohopanepolyols, pentacyclic hopanoid lipids. Based on the phylogenetic distribution of hopanoid production by extant bacteria, hopanes have been used as indicators of specific bacterial groups and/or their metabolisms. However, our ability to interpret them ultimately depends on understanding the physiological roles of hopanoids in modern bacteria. Toward this end, we set out to identify genes required for hopanoid biosynthesis in the anoxygenic phototroph Rhodopseudomonas palustris TIE-1 to enable selective control of hopanoid production. We attempted to delete 17 genes within a putative hopanoid biosynthetic gene cluster to determine their role, if any, in hopanoid biosynthesis. Two genes, hpnH and hpnG, are required to produce both bacteriohopanetetrol and aminobacteriohopanetriol, whereas a third gene, hpnO, is required only for aminobacteriohopanetriol production. None of the genes in this cluster are required to exclusively synthesize bacteriohopanetetrol, indicating that at least one other hopanoid biosynthesis gene is located elsewhere on the chromosome. Physiological studies with the different deletion mutants demonstrated that unmethylated and C(30) hopanoids are sufficient to maintain cytoplasmic but not outer membrane integrity. These results imply that hopanoid modifications, including methylation of the A-ring and the addition of a polar head group, may have biologic functions beyond playing a role in membrane permeability.


Assuntos
Proteínas de Bactérias/genética , Mutação , Rodopseudomonas/metabolismo , Triterpenos/metabolismo , Proteínas de Bactérias/metabolismo , Permeabilidade da Membrana Celular , Deleção de Genes , Lipídeos/biossíntese , Família Multigênica , Rodopseudomonas/crescimento & desenvolvimento
2.
Geobiology ; 7(5): 524-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19811542

RESUMO

2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis. However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms besides cyanobacteria and their physiological functions are unknown. As a first step toward understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and intercellular localization of hopanoids in the three cell types of Nostoc punctiforme: vegetative cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low concentrations in heterocysts. Hopanoid production initially increased threefold in cells starved of nitrogen but returned to levels consistent with vegetative cells within 2 weeks. Vegetative and akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid content in their outer membrane relative to vegetative cells. Akinetes formed in response either to low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per se. Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids cannot be functionally linked to oxygenic photosynthesis in N. punctiforme.


Assuntos
Nostoc/crescimento & desenvolvimento , Nostoc/metabolismo , Triterpenos/metabolismo , Membrana Celular/química , Estrutura Molecular , Nostoc/química
3.
J Bacteriol ; 190(8): 2933-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18281403

RESUMO

Pseudomonas butanovora possesses an alcohol-inducible alkane monooxygenase, butane monooxygenase (BMO), that initiates growth on C(2)-C(9) alkanes. A lacZ transcriptional reporter strain, P. butanovora bmoX::lacZ, in which the BMO promoter controls the expression of beta-galactosidase activity, was used to show that 1-butanol induced the BMO promoter in the presence or absence of O(2) when lactate-grown, BMO-repressed cells were washed free of lactate and incubated in NH(4)Cl-KNa phosphate buffer. In contrast, when lactate-grown cells of the reporter strain were incubated in phosphate buffer containing the mineral salts of standard growth medium, 1-butanol-dependent induction was significantly repressed at low O(2) (1 to 2% [vol/vol]) and totally repressed under anoxic conditions. The repressive effect of the mineral salts was traced to its copper content. In cells exposed to 1% (vol/vol) O(2), CuSO(4) (0.5 microM) repressed 1-butanol-dependent induction of beta-galactosidase activity. Under oxic conditions (20% O(2) [vol/vol]), significantly higher concentrations of CuSO(4) (2 microM) were required for almost complete repression of induction in lactate-grown cells. A combination of the Cu(2+) reducing agent Na ascorbate (100 microM) and CuSO(4) (0.5 microM) repressed the induction of beta-galactosidase activity under oxic conditions to the same extent that 0.5 microM CuSO(4) alone repressed it under anoxic conditions. Under oxic conditions, 2 microM CuSO(4) repressed induction of the BMO promoter less effectively in butyrate-grown cells of the bmoX::lacZ strain and of an R8-bmoX::lacZ mutant reporter strain with a putative BMO regulator, BmoR, inactivated. Under anoxic conditions, CuSO(4) repression remained highly effective, regardless of the growth substrate, in both BmoR-positive and -negative reporter strains.


Assuntos
Butanos/metabolismo , Cobre/metabolismo , Citocromo P-450 CYP4A/biossíntese , Regulação Bacteriana da Expressão Gênica , Pseudomonas/enzimologia , Pseudomonas/fisiologia , Fusão Gênica Artificial , Meios de Cultura/química , Genes Reporter , Ácido Láctico/metabolismo , Oxirredução , Oxigênio/metabolismo , Propionatos/metabolismo , beta-Galactosidase/biossíntese
4.
Microbiology (Reading) ; 153(Pt 11): 3722-3729, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17975080

RESUMO

Butane monooxygenase (BMO) catalyses the oxidation of alkanes to alcohols in the alkane-utilizing bacterium 'Pseudomonas butanovora'. Incubation of alkane-grown 'P. butanovora' with butyrate or propionate led to irreversible time- and O2-dependent loss of BMO activity. In contrast, BMO activity was unaffected by incubation with lactate or acetate. Chloramphenicol inhibited the synthesis of new BMO, but did not change the kinetics of propionate-dependent BMO inactivation, suggesting that the propionate effect was not simply due to it acting as a repressor of BMO transcription. BMO was protected from propionate-dependent inactivation by the presence of its natural substrate, butane. Although both the time and O2 dependency of propionate inactivation of BMO imply that propionate might be a suicide substrate, no evidence was obtained for BMO-dependent propionate consumption, or 14C labelling of BMO polypeptides by [2-(14)C]propionate during inactivation. Propionate-dependent BMO inactivation was also explored in mutant strains of 'P. butanovora' containing single amino acid substitutions in the alpha-subunit of the BMO hydroxylase. Propionate-dependent BMO inactivation in two mutant strains with amino acid substitutions close to the catalytic site differed from wild-type (one was more sensitive and the other less), providing further evidence that propionate-dependent inactivation involves interaction with the BMO catalytic site. A putative model is presented that might explain propionate-dependent inactivation of BMO when framed within the context of the catalytic cycle of the closely related enzyme, soluble methane monooxygenase.


Assuntos
Butanos/metabolismo , Oxigenases de Função Mista/antagonistas & inibidores , Propionatos/farmacologia , Pseudomonas/enzimologia , Sítios de Ligação , Radioisótopos de Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética
5.
J Bacteriol ; 188(7): 2586-92, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16547046

RESUMO

Physiological and regulatory mechanisms that allow the alkane-oxidizing bacterium Pseudomonas butanovora to consume C2 to C8 alkane substrates via butane monooxygenase (BMO) were examined. Striking differences were observed in response to even- versus odd-chain-length alkanes. Propionate, the downstream product of propane oxidation and of the oxidation of other odd-chain-length alkanes following beta-oxidation, was a potent repressor of BMO expression. The transcriptional activity of the BMO promoter was reduced with as little as 10 microM propionate, even in the presence of appropriate inducers. Propionate accumulated stoichiometrically when 1-propanol and propionaldehyde were added to butane- and ethane-grown cells, indicating that propionate catabolism was inactive during growth on even-chain-length alkanes. In contrast, propionate consumption was induced (about 80 nmol propionate consumed.min(-1).mg protein(-1)) following growth on the odd-chain-length alkanes, propane and pentane. The induction of propionate consumption could be brought on by the addition of propionate or pentanoate to the growth medium. In a reporter strain of P. butanovora in which the BMO promoter controls beta-galactosidase expression, only even-chain-length alcohols (C2 to C8) induced beta-galactosidase following growth on acetate or butyrate. In contrast, both even- and odd-chain-length alcohols (C3 to C7) were able to induce beta-galactosidase following the induction of propionate consumption by propionate or pentanoate.


Assuntos
Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Propionatos/metabolismo , Pseudomonas/enzimologia , Pseudomonas/genética , Álcoois/metabolismo , Oxirredução , Regiões Promotoras Genéticas , Especificidade por Substrato , Transcrição Gênica
6.
Appl Environ Microbiol ; 71(10): 6054-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16204521

RESUMO

We examined cooxidation of three different dichloroethenes (1,1-DCE, 1,2-trans DCE, and 1,2-cis DCE) by butane monooxygenase (BMO) in the butane-utilizing bacterium "Pseudomonas butanovora." Different organic acids were tested as exogenous reductant sources for this process. In addition, we determined if DCEs could serve as surrogate inducers of BMO gene expression. Lactic acid supported greater rates of oxidation of the three DCEs than the other organic acids tested. The impacts of lactic acid-supported DCE oxidation on BMO activity differed among the isomers. In intact cells, 50% of BMO activity was irreversibly lost after consumption of approximately 20 nmol mg protein(-1) of 1,1-DCE and 1,2-trans DCE in 0.5 and 5 min, respectively. In contrast, a comparable loss of activity required the oxidation of 120 nmol 1,2-cis DCE mg protein(-1). Oxidation of similar amounts of each DCE isomer ( approximately 20 nmol mg protein(-1)) produced different negative effects on lactic acid-dependent respiration. Despite 1,1-DCE being consumed 10 times faster than 1,2,-trans DCE, respiration declined at similar rates, suggesting that the product(s) of oxidation of 1,2-trans DCE was more toxic to respiration than 1,1-DCE. Lactate-grown "P. butanovora" did not express BMO activity but gained activity after exposure to butane, ethene, 1,2-cis DCE, or 1,2-trans DCE. The products of BMO activity, ethene oxide and 1-butanol, induced lacZ in a reporter strain containing lacZ fused to the BMO promoter, whereas butane, ethene, and 1,2-cis DCE did not. 1,2-trans DCE was unique among the BMO substrates tested in its ability to induce lacZ expression.


Assuntos
Alcanos/metabolismo , Butanos/metabolismo , Dicloroetilenos/farmacologia , Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/metabolismo , Pseudomonas/enzimologia , Dicloroetilenos/química , Dicloroetilenos/metabolismo , Isomerismo , Óperon Lac , Ácido Láctico/metabolismo , Oxigenases de Função Mista/efeitos dos fármacos , Oxigenases de Função Mista/genética , Oxirredução , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA