Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273498

RESUMO

Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year-round eddy covariance estimates of net carbon dioxide (CO2 ), mid-April to October methane (CH4 ) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow-season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2 (13-59 g C m-2 year-1 ) and stronger sources of CH4 (11-14 g CH4 m-2 from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m-2 year-1 , or twice what has been previously reported across other boreal sites. Net CO2 release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4 emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2 , was also the largest CH4 emitter. These results suggest that the future carbon-source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2 ), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long-term measurements to identify carbon cycle process changes in a warming climate.


Assuntos
Ecossistema , Pergelissolo , Dióxido de Carbono/análise , Metano , Solo , Água
2.
Astrobiology ; 23(9): 1006-1018, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566539

RESUMO

Abstract Permafrost is important from an exobiology and climate change perspective. It serves as an analog for extraplanetary exploration, and it threatens to emit globally significant amounts of greenhouse gases as it thaws due to climate change. Viable microbes survive in Earth's permafrost, slowly metabolizing and transforming organic matter through geologic time. Ancient permafrost microbial communities represent a crucial resource for gaining novel insights into survival strategies adopted by extremotolerant organisms in extraplanetary analogs. We present a proof-of-concept study on ∼22 Kya permafrost to determine the potential for coupling Raman and fluorescence biosignature detection technology from the NASA Mars Perseverance rover with microbial community characterization in frozen soils, which could be expanded to other Earth and off-Earth locations. Besides the well-known utility for biosignature detection and identification, our results indicate that spectral mapping of permafrost could be used to rapidly characterize organic carbon characteristics. Coupled with microbial community analyses, this method has the potential to enhance our understanding of carbon degradation and emissions in thawing permafrost. Further, spectroscopy can be accomplished in situ to mitigate sample transport challenges and in assessing and prioritizing frozen soils for further investigation. This method has broad-range applicability to understanding microbial communities and their associations with biosignatures and soil carbon and mineralogic characteristics relevant to climate science and astrobiology.


Assuntos
Mudança Climática , Marte , Pergelissolo , Carbono , Solo/química , Microbiologia do Solo
3.
ISME J ; 17(8): 1224-1235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217592

RESUMO

Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25-50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions.


Assuntos
Microbiota , Pergelissolo , Pergelissolo/química , Solo/química , Microbiologia do Solo , Microbiota/genética , Metagenoma , Carbono/metabolismo
4.
Environ Sci Technol ; 57(9): 3505-3515, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36811552

RESUMO

Permafrost underlies approximately a quarter of the Northern Hemisphere and is changing amidst a warming climate. Thawed permafrost can enter water bodies through top-down thaw, thermokarst erosion, and slumping. Recent work revealed that permafrost contains ice-nucleating particles (INPs) with concentrations comparable to midlatitude topsoil. These INPs may impact the surface energy budget of the Arctic by affecting mixed-phase clouds, if emitted into the atmosphere. In two 3-4-week experiments, we placed 30,000- and 1000-year-old ice-rich silt permafrost in a tank with artificial freshwater and monitored aerosol INP emissions and water INP concentrations as the water's salinity and temperature were varied to mimic aging and transport of thawed material into seawater. We also tracked aerosol and water INP composition through thermal treatments and peroxide digestions and bacterial community composition with DNA sequencing. We found that the older permafrost produced the highest and most stable airborne INP concentrations, with levels comparable to desert dust when normalized to particle surface area. Both samples showed that the transfer of INPs to air persisted during simulated transport to the ocean, demonstrating a potential to influence the Arctic INP budget. This suggests an urgent need for quantifying permafrost INP sources and airborne emission mechanisms in climate models.


Assuntos
Gelo , Pergelissolo , Gelo/análise , Água , Clima , Aerossóis
5.
Chemosphere ; 318: 137899, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693479

RESUMO

Lead (Pb) and antimony (Sb) contamination pose a major environmental risk at firing ranges and threaten land sustainability. Methods for the stabilization of metal (loid) contaminants are necessary to prevent off-site migration of metals in surface and ground water or from soil erosion. In the present study, two remediation treatments (ferric chloride/calcium carbonate and nanoscale zero-valent iron (nZVI)) were applied to flow-through soil columns containing four types of soils (sand, sandy loam, loamy sand, and silty loam) to study Pb and Sb behavior. Water runoff was continuously monitored for three months prior to amendment addition and for the following ten months. Soils were characterized before and after reaction. We found Sb was more mobile than Pb in all soil systems and was primarily present in the dissolved fraction whereas Pb was associated with both soil organic matter (SOM) and Fe colloids. Dominant Pb solid phase species were comprised of Pb0, PbO, PbCO3, and Pb sorbed to Fe(III) oxides while Sb was present as fully oxidized Sb(V) in soil and soil solution. The nZVI addition had minimal impact on Pb and Sb immobilization compared to control soil. The FeCl2 and CaCO3 amendment decreased pore water Sb concentrations by >80% for all soil types and >96% reduction in the fine- and coarse-grained soil types (silt loam and sand). Lead was initially mobilized coinciding with a decrease in pH from the hydrolysis of Fe(II) in solution. Additional soil treatments have the potential to be effective for system-wide immobilization with adequate additions of CaCO3 buffer. Though this study focused on bullet fragment weathering as a source of Pb and Sb the results have application to environmental monitoring and remediation efforts at mining or industrial runoff sites.


Assuntos
Poluentes do Solo , Solo , Solo/química , Compostos Férricos , Chumbo , Areia , Antimônio/química , Ferro/química , Água , Poluentes do Solo/análise
6.
Sci Total Environ ; 845: 157288, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839897

RESUMO

Rapid climate warming across northern high latitudes is leading to permafrost thaw and ecosystem carbon release while simultaneously impacting other biogeochemical cycles including nitrogen. We used a two-year laboratory incubation study to quantify concomitant changes in carbon and nitrogen pool quantity and quality as drivers of potential CO2 production in thawed permafrost soils from eight soil cores collected across the southern Northwest Territories (NWT), Canada. These data were contextualized via in situ annual thaw depth measurements from 2015 to 2019 at 40 study sites that varied in burn history. We found with increasing time since experimental thaw the dissolved carbon and nitrogen pool quality significantly declined, indicating sustained microbial processing and selective immobilization across both pools. Piecewise structural equation modeling revealed CO2 trends were predominantly predicted by initial soil carbon content with minimal influence of dissolved phase carbon. Using these results, we provide a first-order estimate of potential near-surface permafrost soil losses of up to 80 g C m-2 over one year in southern NWT, exceeding regional historic mean primary productivity rates in some areas. Taken together, this research provides mechanistic knowledge needed to further constrain the permafrost­carbon feedback and parameterize Earth system models, while building on empirical evidence that permafrost soils are at high risk of becoming weaker carbon sinks or even significant carbon sources under a changing climate.


Assuntos
Pergelissolo , Carbono/análise , Dióxido de Carbono/análise , Ecossistema , Nitrogênio/análise , Territórios do Noroeste , Pergelissolo/química , Solo/química
7.
Sci Total Environ ; 850: 157445, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35882324

RESUMO

Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Regiões Árticas , Ecossistema , Monitoramento Ambiental , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Solo , Água , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 831: 154969, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35367549

RESUMO

Accurate prediction of evapotranspiration (ET) in wetlands is critical for understanding the coupling effects of water, carbon, and energy cycles in terrestrial ecosystems. Multiple years of eddy covariance (EC) tower ET measurements at five representative wetland ecosystems in the subtropical Big Cypress National Preserve (BCNP), Florida (USA) provide a unique opportunity to assess the performance of the Moderate Resolution Imaging Spectroradiometer (MODIS) ET operational product MOD16A2 and upscale tower measured ET to generate local/regional wetland ET maps. We developed an object-based machine learning ensemble approach to evaluate and map wetland ET by linking tower measured ET with key predictors from MODIS products and meteorological variables. The results showed MOD16A2 had poor performance in characterizing ET patterns and was unsatisfactory for estimating ET over four wetland communities where Nash-Sutcliffe model Efficiency (NSE) was less than 0.5. In contrast, the site-specific machine learning ensemble model had a high predictive power with a NSE larger than 0.75 across all EC sites. We mapped the ET rate for two distinctive seasons and quantified the prediction diversity to identify regions easier or more challenging to estimate from model-based analyses. An integration of MODIS products and other datasets through the machine learning upscaling paradigm is a promising tool for local wetland ET mapping to guide regional water resource management.


Assuntos
Ecossistema , Áreas Alagadas , Aprendizado de Máquina , Imagens de Satélites , Estações do Ano
9.
Sci Total Environ ; 824: 153715, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35149079

RESUMO

Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.


Assuntos
Mercúrio , Regiões Árticas , Mudança Climática , Ecossistema , Lagos , Mercúrio/análise
10.
Chemosphere ; 265: 129110, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33272677

RESUMO

The deposition of metals into the environment as a result of military training activities remains a long-term concern for Defense organizations across the globe. Of particular concern for deposition and potential mobilization are antimony (Sb), arsenic (As), copper (Cu), lead (Pb), and tungsten (W), which are the focus of this review article. The fate, transport, and mobilization of these metals are complicated and depend on a variety of environmental factors that are often convoluted, heterogeneous, and site-dependent. While there have been many studies investigating contaminant mobilization on military training lands there exists a lack of cohesiveness surrounding the current state of knowledge for these five metals. The focus of this review article is to compile the current knowledge of the fate, transport, and ultimate risks presented by metals associated with different military training activities particularly as a result of small arms training activities, artillery/mortar ranges, battleruns, rocket ranges, and grenade courts. From there, we discuss emerging research results and finish with suggestions of where future research efforts and training range designs could be focused toward further reducing the deposition, limiting the migration, and decreasing risks presented by metals in the environment. Additionally, information presented here may offer insights into Sb, As, Cu, Pb, and W in other environmental settings.


Assuntos
Metais Pesados , Militares , Poluentes do Solo , Antimônio/análise , Meio Ambiente , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Poluentes do Solo/análise
11.
Front Microbiol ; 11: 1753, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849382

RESUMO

Permafrost is an extreme habitat yet it hosts microbial populations that remain active over millennia. Using permafrost collected from a Pleistocene chronosequence (19 to 33 ka), we hypothesized that the functional genetic potential of microbial communities in permafrost would reflect microbial strategies to metabolize permafrost soluble organic matter (OM) in situ over geologic time. We also hypothesized that changes in the metagenome across the chronosequence would correlate with shifts in carbon chemistry, permafrost age, and paleoclimate at the time of permafrost formation. We combined high-resolution characterization of water-soluble OM by Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS), quantification of organic anions in permafrost water extracts, and metagenomic sequencing to better understand the relationships between the molecular-level composition of potentially bioavailable OM, the microbial community, and permafrost age. Both age and paleoclimate had marked effects on both the molecular composition of dissolved OM and the microbial community. The relative abundance of genes associated with hydrogenotrophic methanogenesis, carbohydrate active enzyme families, nominal oxidation state of carbon (NOSC), and number of identifiable molecular formulae significantly decreased with increasing age. In contrast, genes associated with fermentation of short chain fatty acids (SCFAs), the concentration of SCFAs and ammonium all significantly increased with age. We present a conceptual model of microbial metabolism in permafrost based on fermentation of OM and the buildup of organic acids that helps to explain the unique chemistry of ancient permafrost soils. These findings imply long-term in situ microbial turnover of ancient permafrost OM and that this pooled biolabile OM could prime ancient permafrost soils for a larger and more rapid microbial response to thaw compared to younger permafrost soils.

12.
Environ Sci Technol ; 54(11): 6651-6660, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32396730

RESUMO

The Pb(II)-binding mechanism on an annealed hematite (1102) surface was studied using crystal truncation rod (CTR) X-ray diffraction coupled with density functional theory (DFT) calculations. The best fit CTR model suggested that Pb(II) sorbed selectively to one type of edge-sharing surface site (ES2) over two other potential surface sites. From the best fit model structure, it was found that the Pb surface complex species forms a trigonal pyramid geometry. The base consists of three oxygen groups, two of which are associated with the substrate surface (IO and IIIO) and one that is a distal O extending toward solution. The trigonal pyramid geometry is slightly distorted with Pb-O bond lengths ranging from 2.21 to 2.31 Å and O-Pb-O bond angles ranging from 72° to 75°. Under this structural distortion, the nearest distance between Pb and Fe is found to be 3.39(1) Å. Consistent with the CTR results, DFT calculations indicate the Pb binding energy at the ES2 site is at least 0.16 eV more favorable than that at the other two potential binding sites considered. Using bond-valence rules we propose a stoichiometry of Pb(II) binding on the hematite (1102) surface which indicates proton release through the deprotonation of all oxygen groups bonding to Pb.


Assuntos
Teoria da Densidade Funcional , Chumbo , Adsorção , Compostos Férricos , Difração de Raios X
13.
PLoS One ; 15(4): e0232169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353013

RESUMO

Approximately one fourth of the Earth's Northern Hemisphere is underlain by permafrost, earth materials (soil, organic matter, or bedrock), that has been continuously frozen for at least two consecutive years. Numerous studies point to evidence of accelerated climate warming in the Arctic and sub-Arctic where permafrost is located. Changes to permafrost biochemical processes may critically impact ecosystem processes at the landscape scale. Here, we sought to understand how the permafrost metabolome responds to thaw and how this response differs based on location (i.e. chronosequence of permafrost formation constituting diverse permafrost types). We analyzed metabolites from microbial cells originating from Alaskan permafrost. Overall, permafrost thaw induced a shift in microbial metabolic processes. Of note were the dissimilarities in biochemical structure between frozen and thawed samples. The thawed permafrost metabolomes from different locations were highly similar. In the intact permafrost, several metabolites with antagonist properties were identified, illustrating the competitive survival strategy required to survive a frozen state. Interestingly, the intensity of these antagonistic metabolites decreased with warmer temperature, indicating a shift in ecological strategies in thawed permafrost. These findings illustrate the impact of change in temperature and spatial variability as permafrost undergoes thaw, knowledge that will become crucial for predicting permafrost biogeochemical dynamics as the Arctic and Antarctic landscapes continue to warm.


Assuntos
Pergelissolo/química , Pergelissolo/microbiologia , Regiões Antárticas , Regiões Árticas , Ecossistema , Metaboloma/fisiologia , Solo , Microbiologia do Solo , Temperatura
14.
Environ Sci Technol ; 54(5): 2951-2960, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32023050

RESUMO

Permafrost contains a large (1700 Pg C) terrestrial pool of organic matter (OM) that is susceptible to degradation as global temperatures increase. Of particular importance is syngenetic Yedoma permafrost containing high OM content. Reactive iron phases promote stabilizing interactions between OM and soil minerals and this stabilization may be of increasing importance in permafrost as the thawed surface region ("active layer") deepens. However, there is limited understanding of Fe and other soil mineral phase associations with OM carbon (C) moieties in permafrost soils. To elucidate the elemental associations involved in organomineral complexation within permafrost systems, soil cores spanning a Pleistocene permafrost chronosequence (19,000, 27,000, and 36,000 years old) were collected from an underground tunnel near Fairbanks, Alaska. Subsamples were analyzed via scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy at the nano- to microscale. Amino acid-rich moieties decreased in abundance across the chronosequence. Strong correlations between C and Fe with discrete Fe(III) or Fe(II) regions selectively associated with specific OM moieties were observed. Additionally, Ca coassociated with C through potential cation bridging mechanisms. Results indicate Fe(III), Fe(II), and mixed valence phases associated with OM throughout diverse permafrost environments, suggesting that organomineral complexation is crucial to predict C stability as permafrost systems warm.


Assuntos
Pergelissolo , Alaska , Carbono , Compostos Férricos , Solo
15.
Int J Phytoremediation ; 22(3): 259-266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31478391

RESUMO

Permafrost thawing could increase soil contaminant mobilization in the environment. Our objective was to quantify metal accumulation capacities for plant species and functional groups common to Alaskan military training ranges where elevated soil metal concentrations were likely to occur. Plant species across multiple military training range sites were collected. Metal content in shoots and roots was compared to soil metal concentrations to calculate bioconcentration and translocation factors. On average, grasses accumulated greater concentrations of Cr, Cu, Ni, Pb, Sb, and Zn relative to forbs or shrubs, and bioconcentrated greater concentrations of Ni and Pb. Shrubs bioconcentrated greater concentrations of Sb. Translocation to shoots was greatest among the forbs. Three native plants were identified as candidate species for use in metal phytostabilization applications. Elymus macrourus, a grass, bioconcentrated substantial concentrations of Cu, Pb, and Zn in roots with low translocation to shoots. Elaeagnus commutata, a shrub, bioconcentrated the greatest amounts of Sb, Ni, and Cr, with a low translocation factor. Solidago decumbens bioconcentrated the greatest amount of Sb among the forbs and translocated the least amount of metals. A combination of forb, shrub, and grass will likely enhance phytostabilization of heavy metals in interior Alaska soils through increased functional group diversity.


Assuntos
Metais Pesados , Militares , Poluentes do Solo , Alaska , Biodegradação Ambiental , Humanos , Solo
16.
Nat Commun ; 10(1): 1716, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979886

RESUMO

Sublimation of ice is rate-controlled by vapor transport away from its outer surface and may have generated landforms on Mars. In ice-cemented ground (permafrost), the lag of soil particles remaining after ice loss decreases subsequent sublimation. Varying soil-ice ratios lead to differential lag development. Here we report 52 years of sublimation measurements from a permafrost tunnel near Fairbanks, Alaska, and constrain models of sublimation, diffusion through porous soil, and lag formation. We derive the first long-term in situ effective diffusion coefficient of ice-free loess, a Mars analog soil, of 9.05 × 10-6 m2 s-1, ~5× larger than past theoretical studies. Exposed ice-wedge sublimation proceeds ~4× faster than predicted from analogy to heat loss by buoyant convection, a theory frequently employed in Mars studies. Our results can be used to map near-surface ice-content differences, identify surface processes controlling landform formation and morphology, and identify target landing sites for human exploration of Mars.

17.
BMC Bioinformatics ; 20(Suppl 2): 103, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871459

RESUMO

BACKGROUND: One of the main challenges when analyzing complex metagenomics data is the fact that large amounts of information need to be presented in a comprehensive and easy-to-navigate way. In the process of analyzing FASTQ sequencing data, visualizing which organisms are present in the data can be useful, especially with metagenomics data or data suspected to be contaminated. Here, we describe the development and application of a command-line tool, Keanu, for visualizing and exploring sample content in metagenomics data. We developed Keanu as an interactive tool to make viewing complex data easier. RESULTS: Keanu, a tool for exploring sequence content, helps a user to understand the presence and abundance of organisms in a sample by analyzing alignments against a database that contains taxonomy data and displaying them in an interactive web page. The content of a sample can be presented either as a collapsible tree, with node size indicating abundance, or as a bilevel partition graph, with arc size indicating abundance. Here, we illustrate how Keanu works by exploring shotgun metagenomics data from a sample collected from a bluff that contained paleosols and a krotovina in an alpine site in Ft. Greely, Alaska. CONCLUSIONS: Keanu provides a simple means by which researchers can explore and visualize species present in sequence data generated from complex communities and environments. Keanu is written in Python and is freely available at https://github.com/IGBB/keanu .


Assuntos
Metagenômica/métodos , Biodiversidade
18.
Proc Natl Acad Sci U S A ; 116(11): 4822-4827, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804186

RESUMO

Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.

19.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683748

RESUMO

Permafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions, such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods, such as metagenomics and 16S rRNA gene sequencing. However, these methods do not distinguish among active, dead, and dormant cells. This is of particular concern in ancient permafrost, where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this, we applied (i) LIVE/DEAD differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19,000, 27,000, and 33,000 years old). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of the class Bacilli were more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of the Clostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous "relic" DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provide insights into the survival of microbial communities in ancient permafrost.IMPORTANCE Permafrost soils store more than half of Earth's soil carbon despite covering ∼15% of the land area (C. Tarnocai et al., Global Biogeochem Cycles 23:GB2023, 2009, https://doi.org/10.1029/2008GB003327). This permafrost carbon is rapidly degraded following a thaw (E. A. G. Schuur et al., Nature 520:171-179, 2015, https://doi.org/10.1038/nature14338). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling postthaw. Permafrost is also an analog for frozen extraterrestrial environments, and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive in permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.


Assuntos
Microbiota/fisiologia , Pergelissolo/microbiologia , Microbiologia do Solo , Solo/química , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Alaska , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Carbono/metabolismo , Clostridiaceae/genética , Clostridiaceae/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecologia , Congelamento , Metagenômica , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Esporos Bacterianos/fisiologia , Temperatura
20.
Environ Sci Technol ; 52(19): 11161-11168, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30188697

RESUMO

The binding mechanism of Sb(V) on a single-crystal hematite (11̅02) surface was studied using crystal truncation rod X-ray diffraction (CTR) under in situ conditions. The best-fit CTR model indicates Sb(V) adsorbs at the surface as an inner-sphere complex forming a tridentate binding geometry with the nearest Sb-Fe distance of 3.09(4) Å and an average Sb-O bond length of 2.08(5) Å. In this binding geometry, Sb is bound at both edge-sharing and corner-sharing sites of the surface Fe-O octahedral units. The chemical plausibility of the proposed structure was further verified by bond valence analysis, which also deduced a protonation scheme for surface O groups. The stoichiometry of the surface reaction predicts the release of one OH- group at pH 5.5.


Assuntos
Compostos Férricos , Adsorção , Difração de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...