Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440848

RESUMO

SARS-CoV-2 can cause a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of the host factors mediating viral infection or restriction is critical to elucidate SARS-CoV-2 host-pathogen interactions and the progression of COVID-19. To this end, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. These screens uncovered proviral and antiviral host factors across highly interconnected host pathways, including components implicated in clathrin transport, inflammatory signaling, cell cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high-molecular weight glycoproteins, as a prominent viral restriction network. We demonstrate that multiple membrane-anchored mucins are critical inhibitors of SARS-CoV-2 entry and are upregulated in response to viral infection. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and suggests interactions between SARS-CoV-2 and airway mucins of COVID-19 patients as a host defense mechanism.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-424862

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has emerged as a major global health threat. The COVID-19 pandemic has resulted in over 80 million cases and 1.7 million deaths to date while the number of cases continues to rise. With limited therapeutic options, the identification of safe and effective therapeutics is urgently needed. The repurposing of known clinical compounds holds the potential for rapid identification of drugs effective against SARS-CoV-2. Here we utilized a library of FDA-approved and well-studied preclinical and clinical compounds to screen for antivirals against SARS-CoV-2 in human pulmonary epithelial cells. We identified 13 compounds that exhibit potent antiviral activity across multiple orthogonal assays. Hits include known antivirals, compounds with anti-inflammatory activity, and compounds targeting host pathways such as kinases and proteases critical for SARS-CoV-2 replication. We identified seven compounds not previously reported to have activity against SARS-CoV-2, including B02, a human RAD51 inhibitor. We further demonstrated that B02 exhibits synergy with remdesivir, the only antiviral approved by the FDA to treat COVID-19, highlighting the potential for combination therapy. Taken together, our comparative compound screening strategy highlights the potential of drug repurposing screens to identify novel starting points for development of effective antiviral mono- or combination therapies to treat COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...