Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236740

RESUMO

Laboratory studies with rodents indicate that in utero proximity of a female to male foetus can affect female's subsequent reproduction due to elevated testosterone exposure during early development. It remains unknown whether these findings can be generalised to non-laboratory species because the need for caesarean section makes it difficult to determine the intrauterine position outside laboratory conditions. As an alternative, some studies have compared the reproductive performance of individuals born in male-biased litters to those born in female-biased litters. We identified 44 of those studies in 28 viviparous species for a total of 176 relationships between litter sex composition around the time of birth and subsequent reproductive performance (fertility, fecundity, age at first reproduction, interbirth intervals or post-natal survival of offspring). Those relationships are discordant and complex both within and across species. Some factors can mask an actual association between litter sex composition and reproductive performance. Conversely, a part of significant relationships between litter sex composition and reproductive performance likely arises via pathways other than androgen- and oestrogen-transfer between foetuses of different sexes.

2.
Evol Appl ; 15(9): 1374-1389, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187187

RESUMO

Trade-offs between host resistance to parasites and host growth or reproduction can occur due to allocation of limited available resources between competing demands. To predict potential trade-offs arising from genetic selection for host resistance, a better understanding of the associated nutritional costs is required. Here, we studied resistance costs by using sheep from lines divergently selected on their resistance to a common blood-feeding gastro-intestinal parasite (Haemonchus contortus). First, we assessed the effects of selection for high or low host resistance on condition traits (body weight, back fat, and muscle thickness) and infection traits (parasite fecal egg excretion and loss in blood haematocrit) at various life stages, in particular during the periparturient period when resource allocation to immunity may limit host resistance. Second, we analysed the condition-infection relationship to detect a possible trade-off, in particular during the periparturient period. We experimentally infected young females in four stages over their first 2 years of life, including twice around parturition (at 1 year and at 2 years of age). Linear mixed-model analyses revealed a large and consistent between-line difference in infection traits during growth and outside of the periparturient period, whereas this difference was strongly attenuated during the periparturient period. Despite their different responses to infection, lines had similar body condition traits. Using covariance decomposition, we then found that the phenotypic relationship between infection and condition was dominated by direct infection costs arising from parasite development within the host. Accounting for these within-individual effects, a cost of resistance on body weight was detected among ewes during their first reproduction. Although this cost and the reproductive constraint on resistance are unlikely to represent a major concern for animal breeding in nutrient-rich environments, this study provides important new insights regarding the nutritional costs of parasite resistance at different lifestages and how these may affect response to selection.

3.
Evol Appl ; 14(12): 2726-2749, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950226

RESUMO

Trade-offs between life history traits are expected to occur due to the limited amount of resources that organisms can obtain and share among biological functions, but are of least concern for selection responses in nutrient-rich or benign environments. In domestic animals, selection limits have not yet been reached despite strong selection for higher meat, milk or egg yields. Yet, negative genetic correlations between productivity traits and health or fertility traits have often been reported, supporting the view that trade-offs do occur in the context of nonlimiting resources. The importance of allocation mechanisms in limiting genetic changes can thus be questioned when animals are mostly constrained by their time to acquire and process energy rather than by feed availability. Selection for high productivity traits early in life should promote a fast metabolism with less energy allocated to self-maintenance (contributing to soma preservation and repair). Consequently, the capacity to breed shortly after an intensive period of production or to remain healthy should be compromised. We assessed those predictions in mammalian and avian livestock and related laboratory model species. First, we surveyed studies that compared energy allocation to maintenance between breeds or lines of contrasting productivity but found little support for the occurrence of an energy allocation trade-off. Second, selection experiments for lower feed intake per unit of product (i.e. higher feed efficiency) generally resulted in reduced allocation to maintenance, but this did not entail fitness costs in terms of survival or future reproduction. These findings indicate that the consequences of a particular selection in domestic animals are much more difficult to predict than one could anticipate from the energy allocation framework alone. Future developments to predict the contribution of time constraints and trade-offs to selection limits will be insightful to breed livestock in increasingly challenging environments.

4.
J Anim Ecol ; 87(4): 921-932, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29931770

RESUMO

To secure mating opportunities, males often develop and maintain conspicuous traits that are involved in intrasexual and/or intersexual competition. While current models of sexual selection rely on the assumption that producing such traits is costly, quantifying the cost of allocating to secondary sexual traits remains challenging. According to the principle of allocation, high energy allocation to growth or sexual traits in males should lead to reduced energy allocation to the maintenance of cellular and physiological functions, potentially causing them to age faster, with impaired survival. We evaluated the short-term and delayed consequences of energy allocation to antlers early in life in two contrasted populations of roe deer, Capreolus capreolus. Although most males mate successfully for the first time in their fourth year, antlers are grown annually from the first year of life onwards. We tested the prediction that a high level of allocation to antler growth during the first two years of life should lead to lower body mass, antler size and survival during the early and late prime stages, as well as to reduced longevity overall. Growing and carrying long antlers during the first years of life was not associated with any detectable cost in the late prime stage. The positive association between antler growth in early life and adult body mass instead supports that fawn antler acts as an honest signal of phenotypic quality in roe deer. For a given body mass, yearling males growing longer antlers displayed impaired performance during their late prime. We also found a trend for a short-term survival cost of allocation to relative antler length during the second year of life. Yearling males that grow long antlers relative to their mass might display a fast life-history tactic. We argue that differential allocation to secondary sexual traits generates a diversity of individual trajectories that should impact population dynamics.


Assuntos
Chifres de Veado/fisiologia , Cervos/fisiologia , Metabolismo Energético , Longevidade , Fenótipo , Animais , França , Masculino , Suíça
5.
Front Zool ; 13: 32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27418939

RESUMO

BACKGROUND: In most mammals, lactating mothers dramatically increase their food intake after parturition and reach a peak intake rate after a certain time while their offspring continue to grow. A common view, perpetuated by the metabolic theory of ecology, is that the allometric scaling of maternal metabolic rate with body mass limits the changes in energy intake and expenditure. Therefore these potential effects of metabolic scaling should be reflected in the elevation of maternal energy intake during lactation. To test this hypothesis, we collected published data on 24 species (13 domesticated) and established scaling relationships for several characteristics of the patterns of energy intake elevation (amplitude of the elevation, time to peak, and cumulative elevation to peak). RESULTS: A curvilinear allometric scaling relationship with maternal body mass (in double-logarithmic space) was found for the amplitude of maternal energy intake elevation, similarly to what has been observed for scaling relationships of basal metabolic rate in non-breeding mammals. This result indirectly supports the metabolic theory of ecology. However, this curvilinear allometric scaling does not seem to drive the scaling relationships found for the other characteristics of maternal energy intake. Both the duration and shape of the energy intake patterns showed substantial variation independently of species' body mass. CONCLUSIONS: Data available for a few mammals, mostly domesticated, provides little evidence for the hypothesis that a single law of metabolic scaling governs the elevation of maternal energy intake after parturition. Obtaining further food intake data in wild species will be crucial to unravel the general mechanisms underlying variation in this unique adaptation of mammalian females.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...