Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 10(1): veae012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476867

RESUMO

Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.

2.
Vet Res Commun ; 47(4): 2193-2197, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36930249

RESUMO

In February 2022, mortalities among great white pelicans (Pelecanus onocrotalus) were reported in the Parc National de Diawling, southwestern Mauritania. Samples were collected and processed, indicating the presence of high pathogenicity avian influenza subtype H5N1. A nearly complete genome was generated for one sample, revealing a high similarity [> 99.5% (H5) nucleotide sequence identity] with Clade 2.3.4.4b H5N1 identified in Europe in 2022.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Virus da Influenza A Subtipo H5N1/genética , Mauritânia , Aves , Filogenia
3.
One Health ; 15: 100413, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277109

RESUMO

A new outbreak of Rift Valley fever (RVF) occurred in Mauritania from September to November 2020, involving 78 reported human cases and 186 reported animal cases. Eleven out of the 13 regions of the country were affected by the epidemic, with the highest number of both human and animal cases in Tagant, Assaba and Brakna regions. The most affected animal species in this outbreak was camels, followed by small ruminants. Among the 10 mosquito species caught, 7 species, Culex poicilipes, Cx. quinquefasciatus, Cx. antennatus, Cx. univitattus, Aedes vexans, Mansonia africana and Ma. uniformis, are known to be involved in the transmission of RVF virus. Phylogenetic analyses based on the partial NSs gene revealed close proximity between the human/animal Mauritania 2020 viral strains and the Mauritania 2015/Niger 2016 strains, suggesting re-emergence of the RVF virus in the country since the last reported outbreak in 2015.

4.
PLoS Negl Trop Dis ; 16(4): e0010203, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35427361

RESUMO

In Mauritania, several mosquito-borne viruses have been reported that can cause devastating diseases in animals and humans. However, monitoring data on their occurrence and local distribution are limited. Rift Valley fever virus (RVFV) is an arthropod-borne virus that causes major outbreaks throughout the African continent and the Arabian Peninsula. The first Rift Valley fever (RVF) epidemic in Mauritania occurred in 1987 and since then the country has been affected by recurrent outbreaks of the disease. To gain information on the occurrence of RVFV as well as other mosquito-borne viruses and their vectors in Mauritania, we collected and examined 4,950 mosquitoes, belonging to four genera and 14 species. The mosquitoes were captured during 2018 in the capital Nouakchott and in southern parts of Mauritania. Evidence of RVFV was found in a mosquito pool of female Anopheles pharoensis mosquitoes collected in December on a farm near the Senegal River. At that time, 37.5% of 16 tested Montbéliarde cattle on the farm showed RVFV-specific IgM antibodies. Additionally, we detected IgM antibodies in 10.7% of 28 indigenous cattle that had been sampled on the same farm one month earlier. To obtain information on potential RVFV reservoir hosts, blood meals of captured engorged mosquitoes were analyzed. The mosquitoes mainly fed on humans (urban areas) and cattle (rural areas), but also on small ruminants, donkeys, cats, dogs and straw-colored fruit bats. Results of this study demonstrate the circulation of RVFV in Mauritania and thus the need for further research to investigate the distribution of the virus and its vectors. Furthermore, factors that may contribute to its maintenance should be analyzed more closely. In addition, two mosquito pools containing Aedes aegypti and Culex quinquefasciatus mosquitoes showed evidence of dengue virus (DENV) 2 circulation in the city of Rosso. Further studies are therefore needed to also examine DENV circulation in Mauritania.


Assuntos
Aedes , Vírus da Dengue , Comportamento Alimentar , Flavivirus , Vírus da Febre do Vale do Rift , Animais , Bovinos , Feminino , Flavivirus/isolamento & purificação , Imunoglobulina M , Mauritânia/epidemiologia , Mosquitos Vetores , Vírus da Febre do Vale do Rift/isolamento & purificação
5.
PLoS Negl Trop Dis ; 15(4): e0009228, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844691

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is one of the most widespread zoonotic arthropod-borne viruses in many parts of Africa, Europe and Asia. It belongs to the family of Nairoviridae in the genus of Orthonairovirus. The main reservoir and vector are ticks of the genus Hyalomma. Livestock animals (such as cattle, small ruminants and camels) develop a viremias lasting up to two weeks with absence of clinical symptoms, followed by seroconversion. This study was carried out to assess risk factors that affect seroprevalence rates in different species. In total, 928 livestock animal samples (cattle = 201; sheep = 247; goats = 233; camels = 247) from 11 out of 13 regions in Mauritania were assayed for CCHFV-specific immunoglobulin G (IgG) antibodies using enzyme-linked immunosorbent assays (ELISA) (including a novel indirect camel-IgG-specific CCHFV ELISA). Inconclusive results were resolved by an immunofluorescence assay (IFA). A generalized linear mixed-effects model (GLMM) was used to draw conclusions about the impact of certain factors (age, species, sex and region) which might have influenced the CCHFV antibody status of surveyed animals. In goats and sheep, about 15% of the animals were seropositive, whereas in cattle (69%) and camels (81%), the prevalence rate was significantly higher. On average, cattle and camels were up to twice to four times older than small ruminants. Interestingly, the seroprevalence in all species was directly linked to the age of the animals, i.e. older animals had significantly higher seroprevalence rates than younger animals. The highest CCHFV seroprevalence in Mauritania was found in camels and cattle, followed by small ruminants. The large proportion of positive animals in cattle and camels might be explained by the high ages of the animals. Future CCHFV prevalence studies should at least consider the age of surveyed animals in order to avoid misinterpretations.


Assuntos
Anticorpos Anti-Idiotípicos/análise , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/diagnóstico , Carrapatos/virologia , Animais , Camelus , Bovinos , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Cabras , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/virologia , Gado/sangue , Gado/parasitologia , Masculino , Mauritânia , Estudos Soroepidemiológicos , Ovinos
6.
PLoS Pathog ; 17(3): e1009397, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33735294

RESUMO

Peste des petits ruminants (PPR) is a deadly viral disease that mainly affects small domestic ruminants. This disease threaten global food security and rural economy but its control is complicated notably because of extensive, poorly monitored animal movements in infected regions. Here we combined the largest PPR virus genetic and animal mobility network data ever collected in a single region to improve our understanding of PPR endemic transmission dynamics in West African countries. Phylogenetic analyses identified the presence of multiple PPRV genetic clades that may be considered as part of different transmission networks evolving in parallel in West Africa. A strong correlation was found between virus genetic distance and network-related distances. Viruses sampled within the same mobility communities are significantly more likely to belong to the same genetic clade. These results provide evidence for the importance of animal mobility in PPR transmission in the region. Some nodes of the network were associated with PPRV sequences belonging to different clades, representing potential "hotspots" for PPR circulation. Our results suggest that combining genetic and mobility network data could help identifying sites that are key for virus entrance and spread in specific areas. Such information could enhance our capacity to develop locally adapted control and surveillance strategies, using among other risk factors, information on animal mobility.


Assuntos
Migração Animal , Peste dos Pequenos Ruminantes/transmissão , Vírus da Peste dos Pequenos Ruminantes , África Ocidental , Animais , Cabras , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes/genética , Ovinos
7.
Front Microbiol ; 12: 766977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003005

RESUMO

Ngari virus (NRIV) has been mostly detected during concurrent outbreaks of Rift Valley fever virus (RVFV). NRIV is grouped in the genus Orthobunyavirus within the Bunyaviridae family and RVFV in the genus Phlebovirus in the family Phenuiviridae. Both are zoonotic arboviruses and can induce hemorrhagic fever displaying the same clinical picture in humans and small ruminants. To investigate if NRIV and its parental viruses, Bunyamwera virus (BUNV) and Batai virus (BATV), played a role during the Mauritanian RVF outbreak in 2015/16, we analyzed serum samples of sheep and goats from central and southern regions in Mauritania by quantitative real-time RT-PCR, serum neutralization test (SNT) and ELISA. 41 of 458 samples exhibited neutralizing reactivity against NRIV, nine against BATV and three against BUNV. Moreover, complete virus genomes from BUNV could be recovered from two sheep as well as two NRIV isolates from a goat and a sheep. No RVFV-derived viral RNA was detected, but 81 seropositive animals including 22 IgM-positive individuals were found. Of these specimens, 61 samples revealed antibodies against RVFV and at least against one of the three orthobunyaviruses. An indirect ELISA based on NRIV/BATV and BUNV derived Gc protein was established as complement to SNT, which showed high performance regarding NRIV, but decreased sensitivity and specificity regarding BATV and BUNV. Moreover, we observed high cross-reactivity among NRIV and BATV serological assays. Taken together, the data indicate the co-circulation of at least BUNV and NRIV in the Mauritanian sheep and goat populations.

9.
Front Vet Sci ; 6: 275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497607

RESUMO

Peste des Petits Ruminants (PPR) is a viral disease affecting predominantly small ruminants. Due to its transboundary nature, regional coordination of control strategies will be key to the success of the on-going PPR eradication campaign. Here, we aimed at exploring the extent of transboundary movement of PPR in West Africa using phylogenetic analyses based on partial viral gene sequences. We collected samples and obtained partial nucleoprotein gene sequence from PPR-infected small ruminants across countries within West Africa. This new sequence data was combined with publically available data from the region to perform phylogenetic analyses. A total of fifty-five sequences were obtained in a region still poorly sampled. Phylogenetic analyses showed that the majority of virus sequences obtained in this study were placed within genetic clusters regrouping samples from multiple West African countries. Some of these clusters contained samples from countries sharing borders. In other cases, clusters grouped samples from very distant countries. Our results suggest extensive and recurrent transboundary movements of PPR within West Africa, supporting the need for a regional coordinated strategy for PPR surveillance and control in the region. Simple phylogenetic analyses based on readily available data can provide information on PPR transboundary dynamics and, therefore, could contribute to improve control strategies. On-going and future projects dedicated to PPR should include extensive genetic characterization and phylogenetic analyses of circulating viral strains in their effort to support the campaign for global eradication of the disease.

10.
Vector Borne Zoonotic Dis ; 17(8): 582-587, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28605299

RESUMO

BACKGROUND: Crimean-Congo hemorrhagic fever virus (CCHFV) was detected for the first time in Mauritania in 1983 and several CCHFV outbreaks were reported in the following years. The last human case was diagnosed in 2015. However, no recent data exist about the prevalence of CCHFV in animals, although it is already described that prevalence studies in animals serve as good risk indicators. CCHFV can cause a severe hemorrhagic fever with a high case fatality rate in humans. Therefore, a precise risk assessment on the basis of updated data is very important. This article gives an overview about the current CCHFV prevalence in cattle in Mauritania. METHODS AND FINDINGS: A seroprevalence study was carried out using 495 cattle sera from Mauritania, which were collected in the year 2013. The sera were analyzed by an inhouse CCHFV-IgG-ELISA. As second screening test, an adapted commercial CCHFV-IgG-ELISA was performed. Inconclusive sera were additionally tested by a modified commercial CCHFV-IgG-IFA. All assays showed high diagnostic sensitivity (>95%) and specificity (>98%). The overall prevalence of CCHFV-specific antibodies found in Mauritanian cattle was 67%, ranging from 56% to 90% in different provinces. CONCLUSION: This study shows a very high CCHFV-specific antibody prevalence in cattle in Mauritania. It is the highest seroprevalence detected in Mauritania so far. This strengthens the hypothesis that CCHFV is a serious and ongoing threat for public health in Mauritania.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Bovinos/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo , Animais , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/epidemiologia , Imunofluorescência , Imunoglobulina G/sangue , Mauritânia/epidemiologia , Estudos Soroepidemiológicos , Zoonoses
11.
PLoS One ; 10(11): e0142129, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566248

RESUMO

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis which affects humans and a wide range of domestic and wild ruminants. The large spread of RVF in Africa and its potential to emerge beyond its geographic range requires the development of surveillance strategies to promptly detect the disease outbreaks in order to implement efficient control measures, which could prevent the widespread of the virus to humans. The Animal Health Mediterranean Network (REMESA) linking some Northern African countries as Algeria, Egypt, Libya, Mauritania, Morocco, Tunisia with Southern European ones as France, Italy, Portugal and Spain aims at improving the animal health in the Western Mediterranean Region since 2009. In this context, a first assessment of the diagnostic capacities of the laboratories involved in the RVF surveillance was performed. The first proficiency testing (external quality assessment--EQA) for the detection of the viral genome and antibodies of RVF virus (RVFV) was carried out from October 2013 to February 2014. Ten laboratories participated from 6 different countries (4 from North Africa and 2 from Europe). Six laboratories participated in the ring trial for both viral RNA and antibodies detection methods, while four laboratories participated exclusively in the antibodies detection ring trial. For the EQA targeting the viral RNA detection methods 5 out of 6 laboratories reported 100% of correct results. One laboratory misidentified 2 positive samples as negative and 3 positive samples as doubtful indicating a need for corrective actions. For the EQA targeting IgG and IgM antibodies methods 9 out of the 10 laboratories reported 100% of correct results, whilst one laboratory reported all correct results except one false-positive. These two ring trials provide evidence that most of the participating laboratories are capable to detect RVF antibodies and viral RNA thus recognizing RVF infection in affected ruminants with the diagnostic methods currently available.


Assuntos
Ensaio de Proficiência Laboratorial , Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/isolamento & purificação , Ruminantes/virologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Humanos , Ensaio de Proficiência Laboratorial/métodos , Região do Mediterrâneo/epidemiologia , RNA Viral/sangue , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Febre do Vale de Rift/sangue , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/imunologia , Ruminantes/sangue , Testes Sorológicos/métodos , Células Vero
12.
Vector Borne Zoonotic Dis ; 14(12): 856-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25514121

RESUMO

Rift valley fever (RVF) is a mosquito-borne disease of domestic and wild ruminants caused by RVF virus (RVFV), a phlebovirus (Bunyaviridae). RVF is widespread in Sub-Saharan Africa. In September of 2010, an RVF outbreak occurred in northern Mauritania involving mass abortions in small ruminants and camels (Camelus dromedarius) and at least 63 human clinical cases, including 13 deaths. In camels, serological prevalence was 27.5-38.5% (95% confidence interval, n=279). For the first time, clinical signs other than abortions were reported in this species, including hemorrhagic septicemia and severe respiratory distress in animals. We assessed the presence of RVFV in camel sera sampled during this outbreak and generated whole-genome sequences of RVFV to determine the possible origin of this RVFV strain. Phylogenetic analyses suggested a shared ancestor between the Mauritania 2010 strain and strains from Zimbabwe (2269, 763, and 2373), Kenya (155_57 and 56IB8), South Africa (Kakamas, SA75 and SA51VanWyck), Uganda (Entebbe), and other strains linked to the 1987 outbreak of RVF in Mauritania (OS1, OS3, OS8, and OS9).


Assuntos
Camelus/virologia , Surtos de Doenças , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/classificação , Animais , Mauritânia/epidemiologia , Filogenia , RNA Viral/análise , Chuva , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética
14.
Emerg Infect Dis ; 17(10): 1894-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22000364

RESUMO

During September-October 2010, an unprecedented outbreak of Rift Valley fever was reported in the northern Sahelian region of Mauritania after exceptionally heavy rainfall. Camels probably played a central role in the local amplification of the virus. We describe the main clinical signs (hemorrhagic fever, icterus, and nervous symptoms) observed during the outbreak.


Assuntos
Surtos de Doenças , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Animais , Camelus/virologia , Humanos , Mauritânia/epidemiologia , Febre do Vale de Rift/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...