Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748559

RESUMO

Species mixture is promoted as a crucial management option to adapt forests to climate change. However, there is little consensus on how tree diversity affects tree water stress, and the underlying mechanisms remain elusive. By using a greenhouse experiment and a soil-plant-atmosphere hydraulic model, we explored whether and why mixing the isohydric Aleppo pine (Pinus halepensis, drought avoidant) and the anisohydric holm oak (Quercus ilex, drought tolerant) affects tree water stress during extreme drought. Our experiment showed that the intimate mixture strongly alleviated Q. ilex water stress while it marginally impacted P. halepensis water stress. Three mechanistic explanations for this pattern are supported by our modelling analysis. First, the difference in stomatal regulation between species allowed Q. ilex trees to benefit from additional soil water in mixture, thereby maintaining higher water potentials and sustaining gas exchange. By contrast, P. halepensis exhibited earlier water stress and stomatal regulation. Second, P. halepensis trees showed stable water potential during drought, although soil water potential strongly decreased, even when grown in a mixture. Model simulations suggested that hydraulic isolation of the root from the soil associated with decreased leaf cuticular conductance was a plausible explanation for this pattern. Third, the higher predawn water potentials for a given soil water potential observed for Q. ilex in mixture can - according to model simulations - be explained by increased soil-to-root conductance, resulting from higher fine root length. This study brings insights into the mechanisms involved in improved drought resistance of mixed species forests.

2.
Methods Mol Biol ; 2395: 227-246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34822156

RESUMO

Estimating how the "hidden half" of plants, that is the roots, take up water or the influences of root system architecture or root physiological properties (such as root hydraulic conductance) on efficiency of water uptake is of prime importance for improving crops against water deficits. To unravel soil-root interactions for water, we describe a system that enables a dynamic imaging of the soil water content and of the root system, from the single root to the whole root system scales.This system uses plants grown in rhizotrons filled with sandy soil and is based on the variable attenuation of the intensity of light transmitted through the rhizotron with soil water content (the rhizotron is nearly translucent when saturated and becomes darker as soil water content decreases). Images of the transmitted light during plant water uptake (or exudation) phases are recorded with a camera, showing a qualitative pattern of water content variations. The gray levels of the image pixels are then quantitatively related to water content with a calibration.This system is affordable and can be easily implemented without specific equipment. It is scalable and quick to allow the phenotyping of a range of plant genotypes relative to their water uptake pattern. This pattern can be then related with root system properties (soil colonization, root architecture ) at different plant stages. In combination with modeling , imaging results help in obtaining physiological parameters such as root hydraulic conductivity, distributed root water uptake rates or root xylem water potential. Combination of modeling and experiment further helps in testing biological and physiological assumptions and in predicting the uptake behavior of plants in the field.


Assuntos
Solo , Raízes de Plantas/química , Plantas , Água/análise , Xilema/química
3.
Front Plant Sci ; 11: 316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296451

RESUMO

Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development.

4.
Data Brief ; 29: 105349, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32181309

RESUMO

Water isotopes from plant xylem and surrounding environment are increasingly used in eco-hydrological studies. Carrière et al. [1] analyzed a dataset of water isotopes in (i) the xylem of three different tree species, (ii) the surrounding soil and drainage water and (iii) the underlying karst groundwater, to understand tree water uptake during drought in two different Mediterranean forests on karst setting. The xylem and soil water were extracted by cryogenic distillation. The full dataset was obtained with Isotope Ratio Mass Spectrometry (IRMS) and Isotope Ratio Infrared Spectrometer (IRIS), and included 219 measurements of δ2H and δ18O. Prompted by unexpected isotopic data characterized by a very negative deuterium excess, a subsample of 46 xylem samples and 9 soil water samples were double checked with both analytical techniques. IRMS and IRIS analyses yielded similar data. Therefore, the results reveal that laser spectrometry allows an accurate estimation of xylem and soil water isotopes. The dataset highlights a strong 2H depletion in xylem water for all species. Deuterium does not seem adequate to interpret ecological processes in this dataset given the strong fractionation.

5.
Sci Total Environ ; 699: 134332, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629315

RESUMO

Karst environments are unusual because their dry, stony and shallow soils seem to be unfavorable to vegetation, and yet they are often covered with forests. How can trees survive in these environments? Where do they find the water that allows them to survive? This study uses midday and predawn water potentials and xylem water isotopes of branches to assess tree water status and the origin of transpired water. Monitoring was conducted during the summers of 2014 and 2015 in two dissimilar plots of Mediterranean forest located in karst environments. The results show that the three monitored tree species (Abies alba Mill, Fagus sylvatica L, and Quercus ilex L.) use deep water resources present in the karst vadose zone (unsaturated zone) more intensively during drier years. Quercus ilex, a species well- adapted to water stress, which grows at the drier site, uses the deep water resource very early in the summer season. Conversely, the two other species exploit the deep water resource only during severe drought. These results open up new perspectives to a better understanding of ecohydrological equilibrium and to improved water balance modeling in karst forest settings.


Assuntos
Fagus/fisiologia , Quercus/fisiologia , Secas , Florestas , Folhas de Planta , Estações do Ano , Solo , Água , Xilema
6.
Plant Methods ; 12: 33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340425

RESUMO

BACKGROUND: To face climate change and subsequent rainfall instabilities, crop breeding strategies now include root traits phenotyping. Rapid estimation of root traits in controlled conditions can be achieved by using parallel electrical capacitance and its linear correlation with root dry mass. The aim of the present study was to improve robustness and efficiency of methods based on capacitance and other electrical variables, such as serial/parallel resistance, conductance, impedance or reactance. Using different electrode configurations and stem contact electrodes, we have measured the electrical impedance spectra of wheat plants grown in pots filled with three types of soil. RESULTS: For each configuration, parallel capacitance and other linearly independent electrical variables were computed and their quality as root dry mass estimator was evaluated by a 'sensitivity score' that we derived from Pearson's correlation coefficient r and linear regression parameters. The highest sensitivity score was obtained by parallel capacitance at an alternating current frequency of 116 Hz in three-terminal configuration. Using a clamp, instead of a needle, as a stem electrode did not significantly affect the capacitance measurements. Finally, in handheld LCR meter equivalent conditions, capacitance had the highest sensitivity score and determination coefficient (r (2) = 0.52) at 10 kHz frequency. CONCLUSION: Our benchmarking of linear correlations between different electrical variables and root dry mass enables to determine more coherent practices for ensuring a sensitive and robust root dry mass estimation, including in handheld LCR meter conditions. This would enhance the value of electrical capacitance as a tool for screening crops in relation with root systems in breeding programs.

7.
Biomed Res Int ; 2015: 356928, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918712

RESUMO

The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl) which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater) closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains.


Assuntos
Bacillus cereus/isolamento & purificação , Microbiologia do Solo , Ciclo Hidrológico , Microbiologia da Água , Animais , Bacillus cereus/patogenicidade , Meio Ambiente , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia
8.
New Phytol ; 166(3): 967-80, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15869656

RESUMO

We lack a thorough conceptual and functional understanding of fine roots. Studies that have focused on estimating the quantity of fine roots provide evidence that they dominate overall plant root length. We need a standard procedure to quantify root length/biomass that takes proper account of fine roots. Here we investigated the extent to which root length/biomass may be underestimated using conventional methodology, and examined the technical reasons that could explain such underestimation. Our discussion is based on original X-ray-based measurements and on a literature review spanning more than six decades. We present evidence that root-length recovery depends strongly on the observation scale/spatial resolution at which measurements are carried out; and that observation scales/resolutions adequate for fine root detection have an adverse impact on the processing times required to obtain precise estimates. We conclude that fine roots are the major component of root systems of most (if not all) annual and perennial plants. Hence plant root systems could be much longer, and probably include more biomass, than is widely accepted.


Assuntos
Raízes de Plantas/fisiologia , Brassica napus/anatomia & histologia , Brassica napus/fisiologia , Gravitropismo , Raízes de Plantas/anatomia & histologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...