Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Transl Med ; 15(688): eabf4077, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947593

RESUMO

Angelman syndrome is a devastating neurogenetic disorder for which there is currently no effective treatment. It is caused by mutations or epimutations affecting the expression or function of the maternally inherited allele of the ubiquitin-protein ligase E3A (UBE3A) gene. The paternal UBE3A allele is imprinted in neurons of the central nervous system (CNS) by the UBE3A antisense (UBE3A-AS) transcript, which represents the distal end of the small nucleolar host gene 14 (SNHG14) transcription unit. Reactivating the expression of the paternal UBE3A allele in the CNS has long been pursued as a therapeutic option for Angelman syndrome. Here, we described the development of an antisense oligonucleotide (ASO) therapy for Angelman syndrome that targets an evolutionarily conserved region demarcating the start of the UBE3A-AS transcript. We designed and chemically optimized gapmer ASOs targeting specific sequences at the start of the human UBE3A-AS transcript. We showed that ASOs targeting this region precisely and efficiently repress the transcription of UBE3A-AS, reactivating the expression of the paternal UBE3A allele in neurotypical and Angelman syndrome induced pluripotent stem cell-derived neurons. We further showed that human-targeted ASOs administered to the CNS of cynomolgus macaques by lumbar intrathecal injection repress UBE3A-AS and reactivate the expression of the paternal UBE3A allele throughout the CNS. These findings support the advancement of this investigational molecular therapy for Angelman syndrome into clinical development (ClinicalTrials.gov, NCT04259281).


Assuntos
Síndrome de Angelman , Humanos , Síndrome de Angelman/terapia , Síndrome de Angelman/tratamento farmacológico , Alelos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Mol Ther Nucleic Acids ; 29: 189-203, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35860385

RESUMO

Mutations in the TECPR2 gene are the cause of an ultra-rare neurological disorder characterized by intellectual disability, impaired speech, motor delay, and hypotonia evolving to spasticity, central sleep apnea, and premature death (SPG49 or HSAN9; OMIM: 615031). Little is known about the biological function of TECPR2, and there are currently no available disease-modifying therapies for this disease. Here we describe implementation of an antisense oligonucleotide (ASO) exon-skipping strategy targeting TECPR2 c.1319delT (p.Leu440Argfs∗19), a pathogenic variant that results in a premature stop codon within TECPR2 exon 8. We used patient-derived fibroblasts and induced pluripotent stem cell (iPSC)-derived neurons homozygous for the p.Leu440Argfs∗19 mutation to model the disease in vitro. Both patient-derived fibroblasts and neurons showed lack of TECPR2 protein expression. We designed and screened ASOs targeting sequences across the TECPR2 exon 8 region to identify molecules that induce exon 8 skipping and thereby remove the premature stop signal. TECPR2 exon 8 skipping restored in-frame expression of a TECPR2 protein variant (TECPR2ΔEx8) containing 1,300 of 1,411 amino acids. Optimization of ASO sequences generated a lead candidate (ASO-005-02) with ∼27 nM potency in patient-derived fibroblasts. To examine potential functional rescue induced by ASO-005-02, we used iPSC-derived neurons to analyze the neuronal localization of TECPR2ΔEx8 and showed that this form of TECPR2 retains the distinct, punctate neuronal expression pattern of full-length TECPR2. Finally, ASO-005-02 had an acceptable tolerability profile in vivo following a single 20-mg intrathecal dose in cynomolgus monkeys, showing some transient non-adverse behavioral effects with no correlating histopathology. Broad distribution of ASO-005-02 and induction of TECPR2 exon 8 skipping was detected in multiple central nervous system (CNS) tissues, supporting the potential utility of this therapeutic strategy for a subset of patients suffering from this rare disease.

4.
Toxicol Lett ; 317: 120-129, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31580884

RESUMO

PEGylation is considered a safe mechanism to enhance the pharmacokinetics (PK) and pharmacodynamics (PD) of biotherapeutics. Previous studies using PEGylation as a PK enhancement tool have reported benign PEG-related vacuolation in multiple tissues. This paper establishes a threshold for PEG burden beyond which there are alterations in tissue architecture that could potentially lead to dysfunction. As part of the nonclinical safety assessment of Compound A, a 12 kDa protein conjugated to a 40 kDa branched PEG molecule, monkeys were dosed subcutaneously twice weekly for 3 months at protein doses resulting in weekly PEG doses of 8, 24, 120, or 160 mg/kg. Consistent with previous reports with PEGylated biomolecules, Compound A administration resulted in intracellular vacuoles attributed to the PEG moiety in macrophages in numerous tissues and epithelial cells in the choroid plexus and kidney. Vacuolation occurred at all doses with dose-dependent severity and no evidence of recovery up to 2 months after dosing cessation. The vacuolation was considered nonadverse at PEG doses ≤120 mg/kg/week. However, at 160 mg/kg/week PEG, the vacuolation in choroid plexus, pituitary gland, kidney, and choroid of the eye was considered adverse due to significant alterations of tissue architecture that raised concern for the possibility of compromised tissue function. To our knowledge, this is the first report of potentially adverse cellular consequences of PEG accumulation in tissues other than kidney. Furthermore, the lack of reversibility of vacuolation coupled with the lack of a biomarker for intracellular PEG accumulation highlights a potential risk that should be weighed against the benefits of PK/PD enhancement for long-term administration of PEGylated compounds at high doses.


Assuntos
Células Epiteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Polietilenoglicóis/toxicidade , Proteínas/toxicidade , Vacúolos/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Composição de Medicamentos , Células Epiteliais/patologia , Feminino , Injeções Subcutâneas , Macaca fascicularis , Macrófagos/patologia , Masculino , Polietilenoglicóis/administração & dosagem , Proteínas/administração & dosagem , Medição de Risco , Fatores de Tempo , Vacúolos/patologia
5.
N Engl J Med ; 381(17): 1644-1652, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31597037

RESUMO

Genome sequencing is often pivotal in the diagnosis of rare diseases, but many of these conditions lack specific treatments. We describe how molecular diagnosis of a rare, fatal neurodegenerative condition led to the rational design, testing, and manufacture of milasen, a splice-modulating antisense oligonucleotide drug tailored to a particular patient. Proof-of-concept experiments in cell lines from the patient served as the basis for launching an "N-of-1" study of milasen within 1 year after first contact with the patient. There were no serious adverse events, and treatment was associated with objective reduction in seizures (determined by electroencephalography and parental reporting). This study offers a possible template for the rapid development of patient-customized treatments. (Funded by Mila's Miracle Foundation and others.).


Assuntos
Proteínas de Membrana Transportadoras/genética , Mutagênese Insercional , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Oligonucleotídeos Antissenso/uso terapêutico , Medicina de Precisão , Doenças Raras/tratamento farmacológico , Biópsia , Criança , Desenvolvimento Infantil , Descoberta de Drogas , Drogas em Investigação/uso terapêutico , Eletroencefalografia , Feminino , Humanos , Testes Neuropsicológicos , RNA Mensageiro , Convulsões/diagnóstico , Convulsões/tratamento farmacológico , Pele/patologia , Sequenciamento Completo do Genoma
6.
Toxicol Appl Pharmacol ; 323: 53-65, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28315356

RESUMO

Sacubitril/valsartan (LCZ696) is the first angiotensin receptor neprilysin inhibitor approved to reduce cardiovascular mortality and hospitalization in patients with heart failure with reduced ejection fraction. As neprilysin (NEP) is one of several enzymes known to degrade amyloid-ß (Aß), there is a theoretical risk of Aß accumulation following long-term NEP inhibition. The primary objective of this study was to evaluate the potential effects of sacubitril/valsartan on central nervous system clearance of Aß isoforms in cynomolgus monkeys using the sensitive Stable Isotope Labeling Kinetics (SILK™)-Aß methodology. The in vitro selectivity of valsartan, sacubitril, and its active metabolite sacubitrilat was established; sacubitrilat did not inhibit other human Aß-degrading metalloproteases. In a 2-week study, sacubitril/valsartan (50mg/kg/day) or vehicle was orally administered to female cynomolgus monkeys in conjunction with SILK™-Aß. Despite low cerebrospinal fluid (CSF) and brain penetration, CSF exposure to sacubitril was sufficient to inhibit NEP and resulted in an increase in the elimination half-life of Aß1-42 (65.3%; p=0.026), Aß1-40 (35.2%; p=0.04) and Aßtotal (29.8%; p=0.04) acutely; this returned to normal as expected with repeated dosing for 15days. CSF concentrations of newly generated Aß (AUC(0-24h)) indicated elevations in the more aggregable form Aß1-42 on day 1 (20.4%; p=0.039) and day 15 (34.7%; p=0.0003) and in shorter forms Aß1-40 (23.4%; p=0.009), Aß1-38 (64.1%; p=0.0001) and Aßtotal (50.45%; p=0.00002) on day 15. However, there were no elevations in any Aß isoforms in the brains of these monkeys on day 16. In a second study cynomolgus monkeys were administered sacubitril/valsartan (300mg/kg) or vehicle control for 39weeks; no microscopic brain changes or Aß deposition, as assessed by immunohistochemical staining, were present. Further clinical studies are planned to address the relevance of these findings.


Assuntos
Aminobutiratos/toxicidade , Peptídeos beta-Amiloides/metabolismo , Antagonistas de Receptores de Angiotensina/toxicidade , Encéfalo/efeitos dos fármacos , Neprilisina/antagonistas & inibidores , Inibidores de Proteases/toxicidade , Tetrazóis/toxicidade , Administração Oral , Aminobutiratos/administração & dosagem , Aminobutiratos/farmacocinética , Antagonistas de Receptores de Angiotensina/administração & dosagem , Antagonistas de Receptores de Angiotensina/farmacocinética , Animais , Biotransformação , Compostos de Bifenilo , Encéfalo/enzimologia , Combinação de Medicamentos , Feminino , Humanos , Imuno-Histoquímica , Marcação por Isótopo , Macaca fascicularis , Neprilisina/metabolismo , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacocinética , Isoformas de Proteínas , Proteínas Recombinantes/metabolismo , Medição de Risco , Tetrazóis/administração & dosagem , Tetrazóis/farmacocinética , Regulação para Cima , Valsartana
7.
Biochem Biophys Res Commun ; 413(2): 248-53, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21884683

RESUMO

In Saccharomyces cerevisiae, the immunosuppressor rapamycin engenders the degradation of excessive RNA polymerase II leading to growth arrest but the regulation of this process is not known yet. Here, we show that this mechanism is dependent on the peptidyl prolyl cis/trans isomerase Rrd1. Strikingly this degradation is independent of RNA polymerase II polyubiquitylation and does not require the elongation factor Elc1. Our data reveal that there are at least two alternative pathways to degrade RNA polymerase II that depend on different type of stresses.


Assuntos
Imunossupressores/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptidilprolil Isomerase/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Sirolimo/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptidilprolil Isomerase/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
8.
BMC Mol Biol ; 11: 92, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21129186

RESUMO

BACKGROUND: In Saccharomyces cerevisiae, the immunosuppressant rapamycin engenders a profound modification in the transcriptional profile leading to growth arrest. Mutants devoid of Rrd1, a protein possessing in vitro peptidyl prolyl cis/trans isomerase activity, display striking resistance to the drug, although how Rrd1 activity is linked to the biological responses has not been elucidated. RESULTS: We now provide evidence that Rrd1 is associated with the chromatin and it interacts with RNA polymerase II. Circular dichroism revealed that Rrd1 mediates structural changes onto the C-terminal domain (CTD) of the large subunit of RNA polymerase II (Rpb1) in response to rapamycin, although this appears to be independent of the overall phosphorylation status of the CTD. In vitro experiments, showed that recombinant Rrd1 directly isomerizes purified GST-CTD and that it releases RNA polymerase II from the chromatin. Consistent with this, we demonstrated that Rrd1 is required to alter RNA polymerase II occupancy on rapamycin responsive genes. CONCLUSION: We propose as a mechanism, that upon rapamycin exposure Rrd1 isomerizes Rpb1 to promote its dissociation from the chromatin in order to modulate transcription.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptidilprolil Isomerase/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Cromatina/metabolismo , Dicroísmo Circular , Isomerismo , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase II/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
9.
Stem Cells Dev ; 18(1): 17-25, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18573038

RESUMO

Stem cells have now been described in a variety of tissues, even in those where the cells' turn over rate is slow, such as the brain and the resting mammary gland. There is also accumulating evidence that tumors are derived from and are maintained by a rare population of dysregulated stem cells. However, discrepancies in the markers used and reported have slowed down the functional characterization of these somatic stem cells. To circumvent this challenging issue, universal stem cell markers with properties common to all stem cell types must be discovered and exploited. In line with this idea, the measurement of aldehyde dehydrogenase isoform 1 (ALDH1) activity shows promising potential as a universal marker for the identification and isolation of stem cells from multiple sources. Herein, we review the available data reporting utilization of ALDH1 activity as a means to identify and isolate stem cells and cancer stem cells, with a special focus on the mammary gland and breast cancer.


Assuntos
Aldeído Desidrogenase/metabolismo , Biomarcadores Tumorais/metabolismo , Isoenzimas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Neoplasias da Mama/enzimologia , Linhagem da Célula , Feminino , Humanos , Glândulas Mamárias Humanas/enzimologia , Glândulas Mamárias Humanas/patologia , Retinal Desidrogenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...