Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(3): e0088623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421171

RESUMO

Temporal variation in community composition is central to our understanding of the assembly and functioning of microbial communities, yet the controls over temporal dynamics for microbiomes of long-lived plants, such as trees, remain unclear. Temporal variation in tree microbiomes could arise primarily from seasonal (i.e., intra-annual) fluctuations in community composition or from longer-term changes across years as host plants age. To test these alternatives, we experimentally isolated temporal variation in plant microbiome composition using a common garden and clonally propagated plants, and we used amplicon sequencing to characterize bacterial/archaeal and fungal communities in the leaf endosphere, root endosphere, and rhizosphere of two Populus spp. over four seasons across two consecutive years. Microbial community composition differed among seasons and years (which accounted for up to 21% of the variation in microbial community composition) and was correlated with seasonal dissimilarity in climatic conditions. However, microbial community dissimilarity was also positively correlated with time, reflecting longer-term compositional shifts as host trees aged. Together, our findings demonstrate that temporal patterns in tree microbiomes arise from both seasonal fluctuations and longer-term changes, which interact to generate unique seasonal patterns each year. In addition to shedding light on two important controls over the assembly of plant microbiomes, our results also suggest future studies of tree microbiomes should account for background temporal dynamics when testing the drivers of spatial patterns in microbial community composition and temporal responses of plant microbiomes to environmental change.IMPORTANCEMicrobiomes are integral to the health of host plants, but we have a limited understanding of the factors that control how the composition of plant microbiomes changes over time. Especially little is known about the microbiome of long-lived trees, relative to annual and non-woody plants. We tested how tree microbiomes changed between seasons and years in poplar (genus Populus), which are widespread and ecologically important tree species that also serve as important biofuel feedstocks. We found the composition of bacterial, archaeal, and fungal communities differed among seasons, but these seasonal differences depended on year. This dependence was driven by longer-term changes in microbial composition as host trees developed across consecutive years. Our findings suggest that temporal variation in tree microbiomes is driven by both seasonal fluctuations and longer-term (i.e., multiyear) development.


Assuntos
Microbiota , Populus , Populus/microbiologia , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Archaea , Microbiota/genética , Árvores
2.
Antonie Van Leeuwenhoek ; 117(1): 45, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424217

RESUMO

Strain AA17T was isolated from an apparently healthy fragment of Montipora capitata coral from the reef surrounding Moku o Lo'e in Kane'ohe Bay, O'ahu, Hawai'i, USA, and was taxonomically evaluated using a polyphasic approach. Comparison of a partial 16S rRNA gene sequence found that strain AA17T shared the greatest similarity with Aestuariibacter halophilus JC2043T (96.6%), and phylogenies based on 16S rRNA gene sequences grouped strain AA17T with members of the Aliiglaciecola, Aestuariibacter, Lacimicrobium, Marisediminitalea, Planctobacterium, and Saliniradius genera. To more precisely infer the taxonomy of strain AA17T, a phylogenomic analysis was conducted and indicated that strain AA17T formed a monophyletic clade with A. halophilus JC2043T, divergent from Aestuariibacter salexigens JC2042T and other related genera. As a result of monophyly and multiple genomic metrics of genus demarcation, strain AA17T and A. halophilus JC2043T comprise a distinct genus for which the name Fluctibacter gen. nov. is proposed. Based on a polyphasic characterisation and identifying differences in genomic and taxonomic data, strain AA17T represents a novel species, for which the name Fluctibacter corallii sp. nov. is proposed. The type strain is AA17T (= LMG 32603 T = NCTC 14664T). This work also supports the reclassification of A. halophilus as Fluctibacter halophilus comb. nov., which is the type species of the Fluctibacter genus. Genomic analyses also support the reclassification of Paraglaciecola oceanifecundans as a later heterotypic synonym of Paraglaciecola agarilytica.


Assuntos
Alteromonadaceae , Antozoários , Ácidos Graxos , Animais , Ácidos Graxos/análise , Havaí , Baías , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
4.
J Appl Microbiol ; 133(6): 3768-3776, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36106419

RESUMO

AIMS: We compared the bacterial endophytic communities of three genetically different almond cultivars that were all grafted on the same type of rootstock, growing side by side within a commercial orchard. METHODS AND RESULTS: We examined the diversity of leaf bacterial endophytes using cultivation-independent techniques and assessed the relative abundance of bacterial families. Two of these three cultivars were dominated by Pseudomonadaceae, while the bacterial composition of the third cultivar consisted mainly of Streptococcaceae. CONCLUSIONS: The experimental set up allowed us to analyse the impact of the shoot cultivar on endophytes, minimizing the influence of rootstock, biogeography, and cultivation status. Our data suggest that the shoot cultivar can shape the leaf endophytic community composition of almond trees. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggest that the shoot cultivar controls the composition of the foliar bacterial endophytic community of almonds. Overall, our results could provide a first step to develop strategies for a more sustainable almond agriculture.


Assuntos
Endófitos , Microbiota , Prunus dulcis , Bactérias/genética , Endófitos/genética , Microbiota/genética , Folhas de Planta/microbiologia , Prunus dulcis/microbiologia
5.
New Phytol ; 235(5): 2127, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35781272
6.
Front Microbiol ; 13: 856454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836417

RESUMO

Dust provides an ecologically significant input of nutrients, especially in slowly eroding ecosystems where chemical weathering intensity limits nutrient inputs from underlying bedrock. In addition to nutrient inputs, incoming dust is a vector for dispersing dust-associated microorganisms. While little is known about dust-microbial dispersal, dust deposits may have transformative effects on ecosystems far from where the dust was emitted. Using molecular analyses, we examined spatiotemporal variation in incoming dust microbiomes along an elevational gradient within the Sierra Nevada of California. We sampled throughout two dry seasons and found that dust microbiomes differed by elevation across two summer dry seasons (2014 and 2015), which corresponded to competing droughts in dust source areas. Dust microbial taxa richness decreased with elevation and was inversely proportional to dust heterogeneity. Likewise, dust phosphorus content increased with elevation. At lower elevations, early season dust microbiomes were more diverse than those found later in the year. The relative abundances of microbial groups shifted during the summer dry season. Furthermore, mutualistic fungal diversity increased with elevation, which may have corresponded with the biogeography of their plant hosts. Although dust fungal pathogen diversity was equivalent across elevations, elevation and sampling month interactions for the relative abundance, diversity, and richness of fungal pathogens suggest that these pathogens differed temporally across elevations, with potential implications for humans and wildlife. This study shows that landscape topography and droughts in source locations may alter the composition and diversity of ecologically relevant dust-associated microorganisms.

7.
mSystems ; 7(4): e0012022, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862808

RESUMO

Pathogenic fungal infections in plants may, in some cases, lead to downstream systematic impacts on the plant metabolome and microbiome that may either alleviate or exacerbate the effects of the fungal pathogen. While Sphaerulina musiva is a well-characterized fungal pathogen which infects Populus tree species, an important wood fiber and biofuel feedstock, little is known about its systematic effects on the metabolome and microbiome of Populus. Here, we investigated the metabolome of Populus trichocarpa and Populus deltoides leaves and roots and the microbiome of the leaf and root endospheres, phylloplane, and rhizosphere to understand the systematic impacts of S. musiva abundance and infection on Populus species in a common garden field setting. We found that S. musiva is indeed present in both P. deltoides and P. trichocarpa, but S. musiva abundance was not statistically related to stem canker onset. We also found that the leaf and root metabolomes significantly differ between the two Populus species and that certain leaf metabolites, particularly the phenolic glycosides salirepin and salireposide, are diminished in canker-infected P. trichocarpa trees compared to their uninfected counterparts. Furthermore, we found significant associations between the metabolome, S. musiva abundance, and microbiome composition and α-diversity, particularly in P. trichocarpa leaves. Our results show that S. musiva colonizes both resistant and susceptible hosts and that the effects of S. musiva on susceptible trees are not confined to the site of canker infection. IMPORTANCE Poplar (Populus spp.) trees are ecologically and economically important trees throughout North America. However, many western North American poplar plantations are at risk due to the introduction of the nonnative fungal pathogen Sphaerulina musiva, which causes leaf spot and cankers, limiting their production. To better understand the interactions among the pathogen S. musiva, the poplar metabolome, and the poplar microbiome, we collected leaf, root, and rhizosphere samples from poplar trees consisting of 10 genotypes and two species with differential resistance to S. musiva in a common garden experiment. Here, we outline the nuanced relationships between the poplar metabolome, microbiome, and S. musiva, showing that S. musiva may affect poplar trees in tissues distal to the site of infection (i.e., stem). Our research contributes to improving the fundamental understanding of S. musiva and Populus sp. ecology and the utility of a holobiont approach in understanding plant disease.


Assuntos
Ascomicetos , Microbiota , Populus , Populus/genética , Ascomicetos/genética , Microbiota/genética , Árvores/microbiologia , Metaboloma
8.
ISME J ; 16(7): 1853-1863, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35430593

RESUMO

Increasing wildfire severity, which is common throughout the western United States, can have deleterious effects on plant regeneration and large impacts on carbon (C) and nitrogen (N) cycling rates. Soil microbes are pivotal in facilitating these elemental cycles, so understanding the impact of increasing fire severity on soil microbial communities is critical. Here, we assess the long-term impact of high-severity fires on the soil microbiome. We find that high-severity wildfires result in a multi-decadal (>25 y) recovery of the soil microbiome mediated by concomitant differences in aboveground vegetation, soil chemistry, and microbial assembly processes. Our results depict a distinct taxonomic and functional successional pattern of increasing selection in post-fire soil microbial communities. Changes in microbiome composition corresponded with changes in microbial functional potential, specifically altered C metabolism and enhanced N cycling potential, which related to rates of potential decomposition and inorganic N availability, respectively. Based on metagenome-assembled genomes, we show that bacterial genomes enriched in our earliest site (4 y since fire) harbor distinct traits such as a robust stress response and a high potential to degrade pyrogenic, polyaromatic C that allow them to thrive in post-fire environments. Taken together, these results provide a biological basis for previously reported process rate measurements and explain the temporal dynamics of post-fire biogeochemistry, which ultimately constrains ecosystem recovery.


Assuntos
Incêndios , Microbiota , Incêndios Florestais , Ecossistema , Genômica , Solo
9.
mSphere ; 6(3): e0131620, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34106767

RESUMO

Recent work shows that the plant microbiome, particularly the initial assembly of this microbiome, influences plant health, survival, and fitness. Here, we characterize the initial assembly of the Populus microbiome across ten genotypes belonging to two poplar species in a common garden using 16S rRNA gene and ITS2 region amplicon sequencing of the leaf endosphere, leaf surface, root endosphere, and rhizosphere. We sampled these microbiomes three times throughout the first growing season and found that the composition of the microbiome changed dramatically over time across all plant-associated habitats and host genotypes. For archaea and bacteria, these changes were dominated by strong homogenizing selection (accounting for 29 to 62% of pairwise comparisons). However, fungal assembly was generally characterized by multiple ecological assembly processes (i.e., a mix of weak selective and dispersal processes). Interestingly, genotype, while a significant moderator of microbiome composition, generally explained less variation than sample date across plant-associated habitats. We defined a set of core genera that accounted for, on average, 36% of the microbiome. The relative abundance of this core community was consistent over time. Additionally, using source tracking modeling, we determined that new microbial taxa colonize from both aboveground and belowground sources, and combined with our ecological assembly null models, we found that both selective and dispersal processes explained the differences between exo- (i.e., leaf surface and rhizosphere) and endospheric microbiomes. Taken together, our results suggest that the initial assembly of the Populus microbiome is time-, genotype-, and habitat-dependent and is moderated by both selective and stochastic factors. IMPORTANCE The initial assembly of the plant microbiome may establish the trajectory of forthcoming microbiome states, which could determine the overall future health of the plant. However, while much is known about the initial microbiome assembly of grasses and agricultural crops, less is known about the initial microbiome of long-lived trees, such as poplar (Populus spp.). Thus, a greater understanding of initial plant microbiome assembly in an ecologically and economically important plant such as Populus is highly desirable. Here, we show that the initial microbiome community composition and assembly in the first growing season of Populus is temporally dynamic and is determined by a combination of both selective and stochastic factors. Our findings could be used to prescribe ecologically informed microbial inoculations and better predict the composition of the Populus microbiome into the future and to better understand its influence on plant health.


Assuntos
Archaea/genética , Bactérias/genética , Fungos/genética , Genótipo , Microbiota/genética , Populus/microbiologia , Archaea/classificação , Bactérias/classificação , Fungos/classificação , Microbiota/fisiologia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Estações do Ano , Microbiologia do Solo
10.
Nat Commun ; 12(1): 2089, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828081

RESUMO

Increasing global temperatures are predicted to stimulate soil microbial respiration. The direct and indirect impacts of warming on soil microbes, nevertheless, remain unclear. This is particularly true for understudied subsoil microbes. Here, we show that 4.5 years of whole-profile soil warming in a temperate mixed forest results in altered microbial community composition and metabolism in surface soils, partly due to carbon limitation. However, microbial communities in the subsoil responded differently to warming than in the surface. Throughout the soil profile-but to a greater extent in the subsoil-physiologic and genomic measurements show that phylogenetically different microbes could utilize complex organic compounds, dampening the effect of altered resource availability induced by warming. We find subsoil microbes had 20% lower carbon use efficiencies and 47% lower growth rates compared to surface soils, which constrain microbial communities. Collectively, our results show that unlike in surface soils, elevated microbial respiration in subsoils may continue without microbial community change in the near-term.


Assuntos
Aquecimento Global , Metagenoma , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , California , Carbono/metabolismo , Florestas , Microbiota , Nitrogênio/metabolismo , RNA Ribossômico 16S , Temperatura
11.
Curr Opin Biotechnol ; 67: 184-191, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592536

RESUMO

Ability to directly sequence DNA from the environment permanently changed microbial ecology. Here, we review the new insights to microbial life gleaned from the applications of metagenomics, as well as the extensive set of analytical tools that facilitate exploration of diversity and function of complex microbial communities. While metagenomics is shaping our understanding of microbial functions in ecosystems via gene-centric and genome-centric methods, annotating functions, metagenome assembly and binning in heterogeneous samples remains challenging. Development of new analysis and sequencing platforms generating high-throughput long-read sequences and functional screening opportunities will aid in harnessing metagenomes to increase our understanding of microbial taxonomy, function, ecology, and evolution in the environment.


Assuntos
Metagenômica , Microbiota , Ecologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma/genética , Microbiota/genética , Análise de Sequência de DNA
12.
New Phytol ; 230(6): 2433-2446, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33525047

RESUMO

It is increasingly evident that the plant microbiome is a strong determinant of plant health. While the ability to manipulate the microbiome in plants and ecosystems recovering from disturbance may be useful, our understanding of the plant microbiome in regenerating plant communities is currently limited. Using 16S ribosomal RNA (rRNA) gene and internal transcribed spacer (ITS) region amplicon sequencing, we characterized the leaf, stem, fine root, rhizome, and rhizosphere microbiome of < 1-yr-old aspen saplings and the associated bulk soil after a recent high-intensity prescribed fire across a burn severity gradient. Consistent with previous studies, we found that soil microbiomes are responsive to fire. We extend these findings by showing that certain plant tissue microbiomes also change in response to fire. Differences in soil microbiome compositions could be attributed to soil chemical characteristics, but, generally, plant tissue microbiomes were not related to plant tissue elemental concentrations. Using source tracking modeling, we also show that fire influences the relative dominance of microbial inoculum and the vertical inheritance of the sapling microbiome from the parent tree. Overall, our results demonstrate how fire impacts plant microbiome assembly, diversity, and composition and highlights potential for further research towards increasing plant fitness and ecosystem recovery after fire events.


Assuntos
Microbiota , Solo , Bactérias/genética , Raízes de Plantas , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
13.
ISME Commun ; 1(1): 78, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37938290

RESUMO

Subsoil microbiomes play important roles in soil carbon and nutrient cycling, yet our understanding of the controls on subsoil microbial communities is limited. Here, we investigated the direct (mean annual temperature and precipitation) and indirect (soil chemistry) effects of climate on microbiome composition and extracellular enzyme activity throughout the soil profile across two elevation-bioclimatic gradients in central California, USA. We found that microbiome composition changes and activity decreases with depth. Across these sites, the direct influence of climate on microbiome composition and activity was relatively lower at depth. Furthermore, we found that certain microbial taxa change in relative abundance over large temperature and precipitation gradients only in specific soil horizons, highlighting the depth dependence of the climatic controls on microbiome composition. Our finding that the direct impacts of climate are muted at depth suggests that deep soil microbiomes may lag in their acclimation to new temperatures with a changing climate.

14.
Front Microbiol ; 11: 1528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733417

RESUMO

The hemlock woolly adelgid (Adelges tsugae, HWA), an invasive insect, is devastating native hemlock populations in eastern North America, and management outcomes have so far had limited success. While many plant microbiomes influence and even support plant immune responses to insect herbivory, relatively little is known about the hemlock microbiome and its interactions with pathogens or herbivores such as HWA. Using 16S rRNA and ITS gene amplicon sequencing, we characterized the needle, branch, root, and rhizosphere microbiome of two hemlock species, Tsuga canadensis and T. sieboldii, that displayed low and high levels of HWA populations. We found that both archaeal/bacterial and fungal needle communities, as well as the archaeal/bacterial branch and root communities, varied in composition in both hemlock species relative to HWA population levels. While host species and plant-associated habitats explained a greater proportion of the variance in the microbiome than did HWA population level, high HWA populations were associated with enrichment of 100 likely fungal pathogen sequence variants across the four plant-associated habitats (e.g., needle, branch, root, rhizosphere) compared to trees with lower HWA populations. This work contributes to a growing body of literature linking plant pathogens and pests with the changes in the associated plant microbiome and host health. Furthermore, this work demonstrates the need to further investigate plant microbiome effects across multiple plant tissues to understand their influences on host health.

15.
Ecol Appl ; 30(4): e02072, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31925848

RESUMO

During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr. High-severity fire in the Sierra Nevada resulted in a long-term (44 +yr) decrease (>50%, P < 0.05) in soil extracellular enzyme activities, basal microbial respiration (56-72%, P < 0.05), and organic carbon (>50%, P < 0.05) in the upper 5 cm compared to sites that had not been burned for at least 115 yr. However, nitrogen (N) processes were only affected in the most recent fire site (4 yr post-fire). Net nitrification increased by over 600% in the most recent fire site (P < 0.001), but returned to similar levels as the unburned control in the 13-yr site. Contrary to previous studies, we did not find a consistent effect of plant cover type on soil biogeochemical processes in mid-successional (10-50 yr) forest soils. Rather, the 44-yr reduction in soil organic carbon (C) quantity correlated positively with dampened C cycling processes. Our results show the drastic and long-term implication of ecologically novel, high-severity fire on soil biogeochemistry and underscore the need for long-term fire ecological experiments.


Assuntos
Traqueófitas , Incêndios Florestais , Carbono , Ecossistema , Florestas , Solo
16.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575762

RESUMO

While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiologia do Solo , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Metagenômica
17.
Ecology ; 100(7): e02695, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31120557

RESUMO

Understanding how altered soil organic carbon (SOC) availability affects microbial communities and their function is imperative in predicting impacts of global change on soil carbon (C) storage and ecosystem function. However, the response of soil microbial communities and their function to depleted C availability in situ is unclear. We evaluated the role of soil C inputs in controlling microbial biomass, community composition, physiology, and function by (1) experimentally excluding plant C inputs in situ for 9 yr in four temperate forest ecosystems along a productivity gradient in Oregon, USA; and (2) integrating these findings with published data from similar C-exclusion studies into a global meta-analysis. Excluding plant C inputs for 9 yr resulted in a 13% decrease in SOC across the four Oregon sites and an overall shift in the microbial community composition, with a 45% decrease in the fungal : bacterial ratio and a 13% increase in Gram-positive : Gram-negative bacterial ratio. Although gross N mineralization decreased under C exclusion, decreases in gross N immobilization were greater, resulting in increased net N mineralization rates in all but the lowest-productivity site. Microbial biomass showed a variable response to C exclusion that was method dependent; however, we detected a 29% decrease in C-use efficiency across the sites, with greater declines occurring in less-productive sites. Although extracellular enzyme activity increased with C exclusion, C exclusion resulted in a 31% decrease in microbial respiration across all sites. Our meta-analyses of published data with similar C-exclusion treatments were largely consistent with our experimental results, showing decreased SOC, fungal : bacterial ratios, and microbial respiration, and increased Gram-positive : Gram-negative bacterial ratio following exclusion of C inputs to soil. Effect sizes of SOC and respiration correlated negatively with the duration of C exclusion; however, there were immediate effects of C exclusion on microbial community composition and biomass that were unaltered by duration of treatment. Our field-based experimental results and analyses demonstrate unequivocally the dominant control of C availability on soil microbial biomass, community composition, and function, and provide additional insight into the mechanisms for these effects in forest ecosystems.


Assuntos
Carbono , Ecossistema , Biomassa , Nitrogênio , Oregon , Solo , Microbiologia do Solo
18.
Integr Comp Biol ; 58(6): 1294-1303, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992244

RESUMO

The Biota Project communicates science to populations historically ignored by the scientific community. The Biota Project is comprised of a team of young professionals from a myriad of backgrounds and locations with interests in promoting science accessibility and equity. We do this by highlighting research conducted by scientists from underrepresented groups in relatable yet underrated locations with the intention of increasing the participation of underrepresented populations in science. The Biota Project centers on the scientific definition of symbiosis as a tool for both educating and learning from its followers. We deliver stories on the environments of our own backyards by merging art and science and distributing these publicly available stories widely online through short films, media clips, drawings, paintings, blogs, and e-newsletters. This project demonstrates a fresh, transferable perspective on strengthening science communication in a way that conjoins scientific discovery with social justice through the promotion of critical thinking by its target audience. Likewise, contributors learn how to better support local communities with each new story and environment. The Biota Project thus sets a symbiotic tone for re-calibrating the balance between academics, researchers, and local communities. When science is made relevant through understanding, its quality and significance are enhanced, and public recognition of its value is increased.


Assuntos
Comunicação , Multimídia , Ciência nas Artes , Ciência/educação , Biota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...