Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Heliyon ; 9(10): e20393, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37842632

RESUMO

The objective of the URBANITE project is to design an open-data, open-source, smart-city framework to enhance the decision-making processes in European cities. The framework's basis is a robust and user-friendly simulation tool that is supplemented with several innovative service modules. One of the modules, a multi-output, machine-learning unit, is deployed on the simulation results, enabling city officials to more effectively analyse vast quantities of data, discern patterns and trends, and so facilitate advanced policy decisions. The city's decision makers define potential city scenarios, key performance indicators, and a utility function, while the module assists in identifying the policy that is best aligned with the stipulated constraints and preferences. One of the main improvements is a speeding up of the policy testing for the decision makers, reducing the time needed for one policy verification from 3 hours to around 10 seconds. The system was evaluated for Bilbao's Moyua area, where it suggested strategies that could result in a decrease in emissions of more than 5% CO2, NOx, PM in the selected area and a broader part of the city with a machine-learning accuracy of 91%. The system was therefore able to provide valuable insights into effective policies for restricting private traffic in specific districts and identifying the most advantageous times for these restrictions.

2.
Comput Methods Programs Biomed ; 231: 107435, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842345

RESUMO

BACKGROUND AND OBJECTIVE: Colorectal cancer is a major health concern. It is now the third most common cancer and the fourth leading cause of cancer mortality worldwide. The aim of this study was to evaluate the performance of machine learning algorithms for predicting survival of colorectal cancer patients 1 to 5 years after diagnosis, and identify the most important variables. METHODS: A sample of 1236 patients diagnosed with colorectal cancer and 118 predictor variables has been used. The outcome of interest was a binary variable indicating whether the patient survived the number of years in question or not. 20 predictor variables were selected using mutual information score with the outcome. We implemented 11 machine learning algorithms and evaluated their performance with a 5 by 2-fold cross-validation with stratified folds and with paired Student's t-tests. We compared the results with the Kaplan-Meier estimator and Cox's proportional hazard regression. RESULTS: Using the 20 most important predictor variables for each of the survival years, the logistic regression algorithm achieved an area under the receiver operating characteristic curve of 0.850 (0.014 SD, 0.840-0.860 95 % CI) for the 1-year, and 0.872 (0.014 SD, 0.861-0.882 95% CI) for the 5-year survival prediction. Using only the 5 most important predictor variables, the corresponding values are 0.793 (0.020 SD, 0.778-0.807 95% CI) and 0.794 (0.011 SD, 0.785-0.802 95% CI). The most important variables for 1-year prediction were number of R residual, M distant metastasis, overall stage, probable recurrence within 5 years, and tumour length, whereas for 5-year prediction the most important were probable recurrence within 5 years, R residual, M distant metastasis, number of positive lymph nodes, and palliative chemotherapy. Biomarkers do not appear among the top 20 most important ones. For all survival intervals, the probability of the top model agrees with the Kaplan-Meier estimate, both in the interval of one standard deviation and in the 95% confidence interval. CONCLUSIONS: The findings suggest that machine learning algorithms can predict the survival probability of colorectal cancer patients and can be used to inform the patients and assist decision-making in clinical care management. In addition, this study unveils the most essential variables for estimating survival short- and long-term among patients with Colorectal cancer.


Assuntos
Inteligência Artificial , Neoplasias Colorretais , Humanos , Algoritmos , Aprendizado de Máquina , Curva ROC , Neoplasias Colorretais/patologia , Estudos Retrospectivos
3.
Healthcare (Basel) ; 10(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35207014

RESUMO

The EU PlatformUptake project's main goal is to investigate the usage of EU open and partly-open platforms in active and healthy aging (AHA) and ambient-assisted living (AAL) domains, from a software viewpoint. The aim of the project was to provide tools for a deeper interpretation and examination of the platforms, gather user feedback, and use it to improve the state-of-the-art approach in the AHA and AAL domains, and define instructions to enhance the platforms within the recommended order. The emphasis is on the software viewpoint for decision makers. In this paper, we present (i) the PlatformUptake methodology for AHA open platform assessments and its main objectives; (ii) clustering of the analyzed platforms; and (iii) the taxonomies generated from the text descriptions of the chosen platforms. With the use of the clustering tools, we present which platforms could be grouped together due to their similarities. Different numbers of clusters were obtained with two clustering approaches, resulting in the most informative two and four cluster groups. The platforms could be rather neatly presented in this way and, thus, potentially guide future platform structuring. Moreover, taxonomies, i.e., decision trees of platforms, were generated to easily determine each specific platform or to find platforms with the desired properties. Altogether, the computer comprehension of the platforms may be important additions to the human way of dealing with the AHA platforms, influencing future design, publications, related work, and research.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34201618

RESUMO

The COVID-19 pandemic affected the whole world, but not all countries were impacted equally. This opens the question of what factors can explain the initial faster spread in some countries compared to others. Many such factors are overshadowed by the effect of the countermeasures, so we studied the early phases of the infection when countermeasures had not yet taken place. We collected the most diverse dataset of potentially relevant factors and infection metrics to date for this task. Using it, we show the importance of different factors and factor categories as determined by both statistical methods and machine learning (ML) feature selection (FS) approaches. Factors related to culture (e.g., individualism, openness), development, and travel proved the most important. A more thorough factor analysis was then made using a novel rule discovery algorithm. We also show how interconnected these factors are and caution against relying on ML analysis in isolation. Importantly, we explore potential pitfalls found in the methodology of similar work and demonstrate their impact on COVID-19 data analysis. Our best models using the decision tree classifier can predict the infection class with roughly 80% accuracy.


Assuntos
COVID-19 , Algoritmos , Humanos , Aprendizado de Máquina , Pandemias , SARS-CoV-2
5.
Healthcare (Basel) ; 9(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067129

RESUMO

Chronic kidney disease (CKD) represents a heavy burden on the healthcare system because of the increasing number of patients, high risk of progression to end-stage renal disease, and poor prognosis of morbidity and mortality. The aim of this study is to develop a machine-learning model that uses the comorbidity and medication data obtained from Taiwan's National Health Insurance Research Database to forecast the occurrence of CKD within the next 6 or 12 months before its onset, and hence its prevalence in the population. A total of 18,000 people with CKD and 72,000 people without CKD diagnosis were selected using propensity score matching. Their demographic, medication and comorbidity data from their respective two-year observation period were used to build a predictive model. Among the approaches investigated, the Convolutional Neural Networks (CNN) model performed best with a test set AUROC of 0.957 and 0.954 for the 6-month and 12-month predictions, respectively. The most prominent predictors in the tree-based models were identified, including diabetes mellitus, age, gout, and medications such as sulfonamides and angiotensins. The model proposed in this study could be a useful tool for policymakers in predicting the trends of CKD in the population. The models can allow close monitoring of people at risk, early detection of CKD, better allocation of resources, and patient-centric management.

6.
JMIR Med Inform ; 9(3): e24501, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666562

RESUMO

BACKGROUND: Congestive heart failure (CHF) is a disease that requires complex management involving multiple medications, exercise, and lifestyle changes. It mainly affects older patients with depression and anxiety, who commonly find management difficult. Existing mobile apps supporting the self-management of CHF have limited features and are inadequately validated. OBJECTIVE: The HeartMan project aims to develop a personal health system that would comprehensively address CHF self-management by using sensing devices and artificial intelligence methods. This paper presents the design of the system and reports on the accuracy of its patient-monitoring methods, overall effectiveness, and patient perceptions. METHODS: A mobile app was developed as the core of the HeartMan system, and the app was connected to a custom wristband and cloud services. The system features machine learning methods for patient monitoring: continuous blood pressure (BP) estimation, physical activity monitoring, and psychological profile recognition. These methods feed a decision support system that provides recommendations on physical health and psychological support. The system was designed using a human-centered methodology involving the patients throughout development. It was evaluated in a proof-of-concept trial with 56 patients. RESULTS: Fairly high accuracy of the patient-monitoring methods was observed. The mean absolute error of BP estimation was 9.0 mm Hg for systolic BP and 7.0 mm Hg for diastolic BP. The accuracy of psychological profile detection was 88.6%. The F-measure for physical activity recognition was 71%. The proof-of-concept clinical trial in 56 patients showed that the HeartMan system significantly improved self-care behavior (P=.02), whereas depression and anxiety rates were significantly reduced (P<.001), as were perceived sexual problems (P=.01). According to the Unified Theory of Acceptance and Use of Technology questionnaire, a positive attitude toward HeartMan was seen among end users, resulting in increased awareness, self-monitoring, and empowerment. CONCLUSIONS: The HeartMan project combined a range of advanced technologies with human-centered design to develop a complex system that was shown to help patients with CHF. More psychological than physical benefits were observed. TRIAL REGISTRATION: ClinicalTrials.gov NCT03497871; https://clinicaltrials.gov/ct2/history/NCT03497871. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1186/s12872-018-0921-2.

7.
Sci Rep ; 10(1): 10475, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32572136

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
PLoS One ; 15(6): e0233976, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502209

RESUMO

Starting renal replacement therapy (RRT) for patients with chronic kidney disease (CKD) at an optimal time, either with hemodialysis or kidney transplantation, is crucial for patient's well-being and for successful management of the condition. In this paper, we explore the possibilities of creating forecasting models to predict the onset of RRT 3, 6, and 12 months from the time of the patient's first diagnosis with CKD, using only the comorbidities data from National Health Insurance from Taiwan. The goal of this study was to see whether a limited amount of data (including comorbidities but not considering laboratory values which are expensive to obtain in low- and medium-income countries) can provide a good basis for such predictive models. On the other hand, in developed countries, such models could allow policy-makers better planning and allocation of resources for treatment. Using data from 8,492 patients, we obtained the area under the receiver operating characteristic curve (AUC) of 0.773 for predicting RRT within 12 months from the time of CKD diagnosis. The results also show that there is no additional advantage in focusing only on patients with diabetes in terms of prediction performance. Although these results are not as such suitable for adoption into clinical practice, the study provides a strong basis and a variety of approaches for future studies of forecasting models in healthcare.


Assuntos
Tomada de Decisão Clínica/métodos , Aprendizado de Máquina , Modelos Biológicos , Insuficiência Renal Crônica/terapia , Terapia de Substituição Renal/estatística & dados numéricos , Comorbidade , Conjuntos de Dados como Assunto , Progressão da Doença , Humanos , Curva ROC , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Taiwan/epidemiologia , Fatores de Tempo , Tempo para o Tratamento/estatística & dados numéricos
9.
Sci Rep ; 10(1): 4583, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179774

RESUMO

Cell Population Data (CPD) provides various blood cell parameters that can be used for differential diagnosis. Data analytics using Machine Learning (ML) have been playing a pivotal role in revolutionizing medical diagnostics. This research presents a novel approach of using ML algorithms for screening hematologic malignancies using CPD. The data collection was done at Konkuk University Medical Center, Seoul. A total of (882 cases: 457 hematologic malignancy and 425 hematologic non-malignancy) were used for analysis. In our study, seven machine learning models, i.e., SGD, SVM, RF, DT, Linear model, Logistic regression, and ANN, were used. In order to measure the performance of our ML models, stratified 10-fold cross validation was performed, and metrics, such as accuracy, precision, recall, and AUC were used. We observed outstanding performance by the ANN model as compared to other ML models. The diagnostic ability of ANN achieved the highest accuracy, precision, recall, and AUC ± Standard Deviation as follows: 82.8%, 82.8%, 84.9%, and 93.5% ± 2.6 respectively. ANN algorithm based on CPD appeared to be an efficient aid for clinical laboratory screening of hematologic malignancies. Our results encourage further work of applying ML to wider field of clinical practice.


Assuntos
Algoritmos , Inteligência Artificial , Biomarcadores Tumorais/análise , Neoplasias Hematológicas/diagnóstico , Aprendizado de Máquina , Redes Neurais de Computação , Adolescente , Adulto , Idoso , Diagnóstico Diferencial , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Máquina de Vetores de Suporte , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...