Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352592

RESUMO

Skin is our outer permeability and immune defense barrier against myriad external assaults. Aryl hydrocarbon receptor (AhR) senses environmental factors and regulates barrier robustness and immune homeostasis. AhR agonist is in clinical trial for atopic dermatitis (AD) treatment, but the underlying mechanism of action remains ill-defined. Here we report OVOL1/Ovol1 as a conserved and direct transcriptional target of AhR in epidermal keratinocytes. We show that OVOL1/Ovol1 impacts AhR regulation of keratinocyte gene expression, and Ovol1 deletion in keratinocytes hampers AhR's barrier promotion function and worsens AD-like inflammation. Mechanistically, we identify Ovol1's direct downstream targets genome-wide, and provide in vivo evidence for Id1's critical role in barrier maintenance and disease suppression. Furthermore, our findings reveal an IL-1/dermal γδT cell axis exacerbating both type 2 and type 3 immune responses downstream of barrier perturbation in Ovol1 -deficient AD skin. Finally, we present data suggesting the clinical relevance of OVOL1 and ID1 function in human AD. Our study highlights a keratinocyte-intrinsic AhR-Ovol1-Id1 regulatory axis that promotes both epidermal and immune homeostasis against AD-like inflammation, implicating new therapeutic targets for AD.

2.
Sci Adv ; 9(27): eadd9984, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418531

RESUMO

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 (gal-3) and osteopontin (Spp1). Spatial transcriptomics, computational inferences of intercellular communication, and in vitro assays indicated that macrophage-derived Spp1 regulates stromal progenitor differentiation. Gal-3+ macrophages were chronically activated in dystrophic muscle, and adoptive transfer assays showed that the gal-3+ phenotype was the dominant molecular program induced within the dystrophic milieu. Gal-3+ macrophages were also elevated in multiple human myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining their transcriptional programs and reveal Spp1 as a major regulator of macrophage and stromal progenitor interactions.


Assuntos
Macrófagos , Transcriptoma , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Fibrose
3.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131694

RESUMO

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.

4.
EMBO Rep ; 24(7): e56214, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37249012

RESUMO

Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.


Assuntos
Proteínas de Ligação a DNA , Epiderme , Proteínas de Ligação a DNA/genética , Epiderme/metabolismo , Pele/metabolismo , Fatores de Transcrição/metabolismo , Células Epidérmicas/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36617638

RESUMO

Epithelial and endothelial cells possess the inherent plasticity to undergo morphological, cellular, and molecular changes leading to their resemblance of mesenchymal cells. A prevailing notion has been that cutaneous wound reepithelialization involves partial epithelial-to-mesenchymal transition (EMT) of wound-edge epidermal cells to enable their transition from a stationary state to a migratory state. In this review, we reflect on past findings that led to this notion and discuss recent studies that suggest a refined view, focusing predominantly on in vivo results using mammalian excisional wound models. We highlight the concept of epithelial-mesenchymal plasticity (EMP), which emphasizes a reversible conversion of epithelial cells across multiple intermediate states within the epithelial-mesenchymal spectrum, and discuss the critical importance of restricting EMT for effective wound reepithelialization. We also outline the current state of knowledge on EMP in pathological wound healing, and on endothelial-to-mesenchymal transition (EndMT), a process similar to EMT, as a possible mechanism contributing to wound fibrosis and scar formation. Harnessing epithelial/endothelial-mesenchymal plasticity may unravel opportunities for developing new therapeutics to treat human wound healing pathologies.


Assuntos
Células Endoteliais , Cicatrização , Animais , Humanos , Células Epiteliais , Fibrose , Mamíferos
6.
Cell Rep ; 40(5): 111155, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926463

RESUMO

Delayed and often impaired wound healing in the elderly presents major medical and socioeconomic challenges. A comprehensive understanding of the cellular/molecular changes that shape complex cell-cell communications in aged skin wounds is lacking. Here, we use single-cell RNA sequencing to define the epithelial, fibroblast, immune cell types, and encompassing heterogeneities in young and aged skin during homeostasis and identify major changes in cell compositions, kinetics, and molecular profiles during wound healing. Our comparative study uncovers a more pronounced inflammatory phenotype in aged skin wounds, featuring neutrophil persistence and higher abundance of an inflammatory/glycolytic Arg1Hi macrophage subset that is more likely to signal to fibroblasts via interleukin (IL)-1 than in young counterparts. We predict systems-level differences in the number, strength, route, and signaling mediators of putative cell-cell communications in young and aged skin wounds. Our study exposes numerous cellular/molecular targets for functional interrogation and provides a hypothesis-generating resource for future wound healing studies.


Assuntos
Fibroblastos , Cicatrização , Comunicação Celular , Fibroblastos/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Pele
7.
J Immunol ; 209(3): 548-558, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851538

RESUMO

Pseudomonas aeruginosa is an important cause of dermal, pulmonary, and ocular disease. Our studies have focused on P. aeruginosa infections of the cornea (keratitis) as a major cause of blinding microbial infections. The infection leads to an influx of innate immune cells, with neutrophils making up to 90% of recruited cells during early stages. We previously reported that the proinflammatory cytokines IL-1α and IL-1ß were elevated during infection. Compared with wild-type (WT), infected Il1b-/- mice developed more severe corneal disease that is associated with impaired bacterial killing as a result of defective neutrophil recruitment. We also reported that neutrophils are an important source of IL-1α and IL-1ß, which peaked at 24 h postinfection. To examine the role of IL-1α compared with IL-1ß in P. aeruginosa keratitis, we inoculated corneas of C57BL/6 (WT), Il1a-/-, Il1b-/-, and Il1a-/-Il1b-/- (double-knockout) mice with 5 × 104 ExoS-expressing P. aeruginosa. Il1b-/- and double-knockout mice have significantly higher bacterial burden that was consistent with delayed neutrophil and monocyte recruitment to the corneas. Surprisingly, Il1a-/- mice had the opposite phenotype with enhanced bacteria clearance compared with WT mice. Although there were no significant differences in neutrophil recruitment, Il1a-/- neutrophils displayed a more proinflammatory transcriptomic profile compared to WT with elevations in C1q expression that likely caused the phenotypic differences observed. To our knowledge, our findings identify a novel, non-redundant role for IL-1α in impairing bacterial clearance.

8.
J Invest Dermatol ; 142(3 Pt A): 583-593.e5, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34461129

RESUMO

Skin epidermis constitutes the exterior barrier that protects the body from dehydration and environmental assaults. Barrier defects underlie common inflammatory skin diseases, but the molecular mechanisms that maintain barrier integrity and regulate epidermal-immune cell cross-talk in inflamed skin are not fully understood. In this study, we show that skin epithelia-specific deletion of Ovol1, which encodes a skin disease‒linked transcriptional repressor, impairs the epidermal barrier and aggravates psoriasis-like skin inflammation in mice in part by enhancing neutrophil accumulation and abscess formation. Through molecular studies, we identify IL-33, a cytokine with known pro-inflammatory and anti-inflammatory activities, and Cxcl1, a neutrophil-attracting chemokine, as potential weak and strong direct targets of Ovol1, respectively. Furthermore, we provide functional evidence that elevated Il33 expression reduces disease severity in imiquimod-treated Ovol1-deficient mice, whereas persistent accumulation and epidermal migration of neutrophils exacerbate it. Collectively, our study uncovers the importance of an epidermally expressed transcription factor that regulates both the integrity of the epidermal barrier and the behavior of neutrophils in psoriasis-like inflammation.


Assuntos
Dermatite , Psoríase , Animais , Proteínas de Ligação a DNA , Dermatite/metabolismo , Modelos Animais de Doenças , Epiderme/metabolismo , Inflamação/metabolismo , Fator Intrínseco/metabolismo , Queratinócitos/metabolismo , Camundongos , Neutrófilos , Pele/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Invest Dermatol ; 141(6): 1542-1552, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33333123

RESUMO

Psoriasis is a common inflammatory skin disease characterized by aberrant inflammation and epidermal hyperplasia. Molecular mechanisms that regulate psoriasis-like skin inflammation remain to be fully understood. Here, we show that the expression of Ovol1 (encoding ovo-like 1 transcription factor) is upregulated in psoriatic skin, and its deletion results in aggravated psoriasis-like skin symptoms following stimulation with imiquimod. Using bulk and single-cell RNA sequencing, we identify molecular changes in the epidermal, fibroblast, and immune cells of Ovol1-deficient skin that reflect an altered course of epidermal differentiation and enhanced inflammatory responses. Furthermore, we provide evidence for excessive full-length IL-1α signaling in the microenvironment of imiquimod-treated Ovol1-deficient skin that functionally contributes to immune cell infiltration and epidermal hyperplasia. Collectively, our study uncovers a protective role for OVOL1 in curtailing psoriasis-like inflammation and the associated skin pathology.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epiderme/patologia , Psoríase/imunologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Epiderme/imunologia , Feminino , Humanos , Hiperplasia/induzido quimicamente , Hiperplasia/imunologia , Hiperplasia/patologia , Imiquimode/administração & dosagem , Imiquimode/imunologia , Interleucina-1alfa/metabolismo , Masculino , Camundongos Knockout , Psoríase/patologia , RNA-Seq , Transdução de Sinais/imunologia , Análise de Célula Única , Fatores de Transcrição/genética , Regulação para Cima/imunologia
10.
Cell Rep ; 30(11): 3932-3947.e6, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187560

RESUMO

Our knowledge of transcriptional heterogeneities in epithelial stem and progenitor cell compartments is limited. Epidermal basal cells sustain cutaneous tissue maintenance and drive wound healing. Previous studies have probed basal cell heterogeneity in stem and progenitor potential, but a comprehensive dissection of basal cell dynamics during differentiation is lacking. Using single-cell RNA sequencing coupled with RNAScope and fluorescence lifetime imaging, we identify three non-proliferative and one proliferative basal cell state in homeostatic skin that differ in metabolic preference and become spatially partitioned during wound re-epithelialization. Pseudotemporal trajectory and RNA velocity analyses predict a quasi-linear differentiation hierarchy where basal cells progress from Col17a1Hi/Trp63Hi state to early-response state, proliferate at the juncture of these two states, or become growth arrested before differentiating into spinous cells. Wound healing induces plasticity manifested by dynamic basal-spinous interconversions at multiple basal transcriptional states. Our study provides a systematic view of epidermal cellular dynamics, supporting a revised "hierarchical-lineage" model of homeostasis.


Assuntos
Epiderme/metabolismo , Epiderme/patologia , Perfilação da Expressão Gênica , Homeostase/genética , Análise de Célula Única , Cicatrização/genética , Animais , Movimento Celular/genética , Feminino , Inflamação/genética , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regulação para Cima/genética
11.
Proc Natl Acad Sci U S A ; 117(11): 5761-5771, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32132203

RESUMO

The circadian clock coordinates a variety of immune responses with signals from the external environment to promote survival. We investigated the potential reciprocal relationship between the circadian clock and skin inflammation. We treated mice topically with the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ) to activate IFN-sensitive gene (ISG) pathways and induce psoriasiform inflammation. IMQ transiently altered core clock gene expression, an effect mirrored in human patient psoriatic lesions. In mouse skin 1 d after IMQ treatment, ISGs, including the key ISG transcription factor IFN regulatory factor 7 (Irf7), were more highly induced after treatment during the day than the night. Nuclear localization of phosphorylated-IRF7 was most prominently time-of-day dependent in epidermal leukocytes, suggesting that these cell types play an important role in the diurnal ISG response to IMQ. Mice lacking Bmal1 systemically had exacerbated and arrhythmic ISG/Irf7 expression after IMQ. Furthermore, daytime-restricted feeding, which affects the phase of the skin circadian clock, reverses the diurnal rhythm of IMQ-induced ISG expression in the skin. These results suggest a role for the circadian clock, driven by BMAL1, as a negative regulator of the ISG response, and highlight the finding that feeding time can modulate the skin immune response. Since the IFN response is essential for the antiviral and antitumor effects of TLR activation, these findings are consistent with the time-of-day-dependent variability in the ability to fight microbial pathogens and tumor initiation and offer support for the use of chronotherapy for their treatment.


Assuntos
Ritmo Circadiano , Imunidade Inata/genética , Interferons/genética , Glicoproteínas de Membrana/genética , Pele/metabolismo , Receptor 7 Toll-Like/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Imiquimode/farmacologia , Indutores de Interferon/farmacologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferons/metabolismo , Masculino , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pele/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(30): 7819-7824, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29915037

RESUMO

Insulin increases glucose uptake into adipose tissue and muscle by increasing trafficking of the glucose transporter Glut4. In cultured adipocytes, the exocytosis of Glut4 relies on activation of the small G protein RalA by insulin, via inhibition of its GTPase activating complex RalGAP. Here, we evaluate the role of RalA in glucose uptake in vivo with specific chemical inhibitors and by generation of mice with adipocyte-specific knockout of RalGAPB. RalA was profoundly activated in brown adipose tissue after feeding, and its inhibition prevented Glut4 exocytosis. RalGAPB knockout mice with diet-induced obesity were protected from the development of metabolic disease due to increased glucose uptake into brown fat. Thus, RalA plays a crucial role in glucose transport in adipose tissue in vivo.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Homeostase , Proteínas ral de Ligação ao GTP/metabolismo , Células 3T3-L1 , Tecido Adiposo Marrom/patologia , Animais , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Deleção de Genes , Glucose/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Camundongos Knockout , Proteínas ral de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...