Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38255568

RESUMO

This paper evaluates the non-uniformity degree of platinum and chromium Schottky contacts on silicon carbide. The forward characteristics of experimental samples were acquired in a wide, 60-500 K, temperature range. Microstructural and conventional electrical characterizations were performed, revealing the presence of inhomogeneities on the contact surface. The main parameters were extracted using inhomogeneity models of varying complexity levels. Their relevance is discussed with respect to the models' applicable, limited, temperature ranges. Finally, complete forward curve fitting was achieved using p-diode modeling, evincing that each type of contact behaves as four parallel-connected ideal diodes. Since these parallel diodes have varying influences on the overall device current with temperature and bias, operable domains can be identified where the samples behave suitably.

2.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214371

RESUMO

For proper operation in real industrial conditions, gas sensors require readout circuits which offer accuracy, noise robustness, energy efficiency and portability. We present an innovative, dedicated readout circuit with a phase locked loop (PLL) architecture for SiC-MOS capacitor sensors. A hydrogen detection system using this circuit is designed, simulated, implemented and tested. The PLL converts the MOS nonlinear small-signal capacitance (affected by hydrogen) into an output voltage proportional to the detected gas concentration. Thus, the MOS sensing element is part of the PLL's voltage-controlled oscillator. This block effectively provides a small AC signal (around 70 mV at 1 MHz) for the sensor and acquires its response. The correct operation of the proposed readout circuit is validated by simulations and experiments. Hydrogen measurements are performed for concentrations up to 1600 ppm. The PLL output exhibited voltage variations close to those discernable from experimental C-V curves, acquired with a semiconductor characterization system, for all investigated MOS sensor samples.


Assuntos
Hidrogênio , Semicondutores , Meio Ambiente
3.
Sensors (Basel) ; 21(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572603

RESUMO

A SiC Schottky dual-diode temperature-sensing element, suitable for both complementary variation of VF with absolute temperature (CTAT) and differential proportional to absolute temperature (PTAT) sensors, is demonstrated over 60-700 K, currently the widest range reported. The structure's layout places the two identical diodes in close, symmetrical proximity. A stable and high-barrier Schottky contact based on Ni, annealed at 750 °C, is used. XRD analysis evinced the even distribution of Ni2Si over the entire Schottky contact area. Forward measurements in the 60-700 K range indicate nearly identical characteristics for the dual-diodes, with only minor inhomogeneity. Our parallel diode (p-diode) model is used to parameterize experimental curves and evaluate sensing performances over this far-reaching domain. High sensitivity, upwards of 2.32 mV/K, is obtained, with satisfactory linearity (R2 reaching 99.80%) for the CTAT sensor, even down to 60 K. The PTAT differential version boasts increased linearity, up to 99.95%. The lower sensitivity is, in this case, compensated by using a high-performing, low-cost readout circuit, leading to a peak 14.91 mV/K, without influencing linearity.

4.
Opt Express ; 27(8): A385-A396, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052890

RESUMO

Laser ignition was used to operate a four-stroke, four-cylinder, multipoint fuel injection gasoline passenger car engine, replacing the engine classical ignition device. The laser ignition system was compactly built with diode end-pumped Nd:YAG/Cr4+:YAG composite ceramics, each laser spark plug delivering pulses at 1.06 µm with 4 mJ energy and 0.8 ns duration at variable repetition rate, in accordance with the engine speed. The engine was operated at constant speed-constant load condition of 2000 rpm-2 bar equivalent brake mean effective pressure, and different ignition timings, thus simulating city traffic situations. Two relative air-fuel ratios have been considered: λ~1 for the stoichiometric mixture operation and λ~1.25 for the lean mixture condition. Parameters indicating engine performance, efficiency, combustion stability, and emissions have been measured and registered when groups of 500 consecutive cycles were acquired. The engine brake power, brake specific fuel consumption, coefficient of variability for indicated mean effective pressure, initial and main combustion stage durations, as well as exhaust emissions like carbon monoxide (CO) and total unburned hydrocarbons (THC) emphasized that significant improvements can be obtained for lean air-fuel mixture operation. Increases of the nitrogen oxides emission (NOx) were measured when laser ignition was used.

5.
Sensors (Basel) ; 19(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137664

RESUMO

This paper presents a high-temperature probe suitable for operating in harsh industrial applications as a reliable alternative to low-lifespan conventional solutions, such as thermocouples. The temperature sensing element is a Schottky diode fabricated on 4H-SiC wafers, with Ni as the Schottky metal, which allows operation at temperatures up to 400 °C, with sensitivities over 2 mV/°C and excellent linearity (R2 > 99.99%). The temperature probe also includes dedicated circuitry for signal acquisition and conversion to the 4 mA-20 mA industrial standard output signal. This read-out circuit can be calibrated for linear response over a tunable temperature detection range. The entire system is designed for full electrical and mechanical compatibility with existing conventional probe casings, allowing for seamless implementation in a factory's sensor network. Such sensors are tested alongside standard thermocouples, with matching temperature monitoring results, over several months, in real working conditions (a cement factory), up to 400 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...