Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(7): 2869-2878, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37415388

RESUMO

A single platinum nanowire (PtNW) chemiresistive sensor for ethylene gas is reported. In this application, the PtNW performs three functions: (1) Joule self-heating to a specified temperature, (2) in situ resistance-based temperature measurement, and (3) detection of ethylene in air as a resistance change. Ethylene gas in air is detected as a reduction in nanowire resistance by up to 4.5% for concentrations ranging from 1 to 30 ppm in an optimum NW temperature range from 630 to 660 K. This response is rapid (30-100 s), reversible, and reproducible for repetitive ethylene pulses. A threefold increase in signal amplitude is observed as the NW thickness is reduced from 60 to 20 nm, commensurate with a signal transduction mechanism involving surface electron scattering.


Assuntos
Nanofios , Gases , Platina , Etilenos
2.
Anal Chem ; 94(35): 12167-12175, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36001648

RESUMO

pH sensors that are nanoscopic in all three dimensions are fabricated within a single gold nanowire. Fabrication involves the formation of a nanogap within the nanowire via electromigration, followed by electropolymerization of pH-responsive poly(aniline) (PANI) that fills the nanogap forming the nanojunction. All fabrication steps are performed using wet chemical methods that do not require a clean room. The measured electrical impedance of the PANI nanojunction is correlated with pH from 2.0 to 9.0 with a response time of 30 s. Larger, micrometer-scale PANI junctions exhibit a slower response. The measured pH is weakly influenced by the salt concentration of the contacting aqueous solution. An impedance measurement at two frequencies (300 kHz and 1.0 Hz) enables estimation of the salt concentration and correction of the measured pH value, preserving the accuracy of the pH measurement across the entire calibration curve for salt concentrations up to 1.0 M. The result is a nanoscopic pH sensor with pH sensing performance approaching that of a conventional, macroscopic pH glass-membrane electrode.


Assuntos
Nanofios , Eletrodos , Ouro , Concentração de Íons de Hidrogênio
3.
Anal Chem ; 93(32): 11259-11267, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34347442

RESUMO

The Virus BioResistor (VBR) is a biosensor capable of rapid and sensitive detection of small protein disease markers using a simple dip-and-read modality. For example, the bladder cancer-associated protein DJ-1 (22 kDa) can be detected in human urine within 1.0 min with a limit of detection (LOD) of 10 pM. The VBR uses engineered virus particles as receptors to recognize and selectively bind the protein of interest. These virus particles are entrained in a conductive poly(3,4-ethylenedioxythiophene) or PEDOT channel. The electrical impedance of the channel increases when the target protein is bound by the virus particles. But VBRs exhibit a sensitivity that is inversely related to the molecular weight of the protein target. Thus, large proteins, such as IgG antibodies (150 kDa), can be undetectable even at high concentrations. We demonstrate that the electrochemical overoxidation of the VBR's PEDOT channel increases its electrical impedance, conferring enhanced sensitivity for both small and large proteins. Overoxidation makes possible the detection of two antibodies, undetectable at a normal VBR, with a limit of detection of 40 ng/mL (250 pM), and a dynamic range for quantitation extending to 600 ng/mL.


Assuntos
Técnicas Biossensoriais , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Imunoglobulina G , Limite de Detecção , Polímeros
4.
Acc Chem Res ; 53(10): 2384-2394, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33001632

RESUMO

The 2018 Nobel Prize in Chemistry recognized in vitro evolution, including the development by George Smith and Gregory Winter of phage display, a technology for engineering the functional capabilities of antibodies into viruses. Such bacteriophages solve inherent problems with antibodies, including their high cost, thermal lability, and propensity to aggregate. While phage display accelerated the discovery of peptide and protein motifs for recognition and binding to proteins in a variety of applications, the development of biosensors using intact phage particles was largely unexplored in the early 2000s. Virus particles, 16.5 MDa in size and assembled from thousands of proteins, could not simply be substituted for antibodies in any existing biosensor architectures.Incorporating viruses into biosensors required us to answer several questions: What process will allow the incorporation of viruses into a functional bioaffinity layer? How can the binding of a protein disease marker to a virus particle be electrically transduced to produce a signal? Will the variable salt concentration of a bodily fluid interfere with electrical transduction? A completely new biosensor architecture and a new scheme for electrical transduction of the binding of molecules to viruses were required.This Account describes the highlights of a research program launched in 2006 that answered these questions. These efforts culminated in 2018 in the invention of a biosensor specifically designed to interface with virus particles: the Virus BioResistor (VBR). The VBR is a resistor consisting of a conductive polymer matrix in which M13 virus particles are entrained. The electrical impedance of this resistor, measured across 4 orders of magnitude in frequency, simultaneously measures the concentration of a target protein and the ionic conductivity of the medium in which the resistor is immersed. Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise ratio (S/N > 100) and excellent sensor-to-sensor reproducibility. Using this new device, we have measured the urinary bladder cancer biomarker nucleic acid deglycase (DJ-1) in urine samples. This optimized VBR is characterized by extremely low sensor-to-sensor coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a limit of quantitation of 30 pM, encompassing 4 orders of magnitude in concentration.


Assuntos
Bacteriófago M13/isolamento & purificação , Técnicas Biossensoriais/métodos , Anticorpos/imunologia , Bacteriófago M13/química , Bacteriófago M13/imunologia , Bacteriófago M13/metabolismo , Biomarcadores Tumorais/urina , Técnicas Biossensoriais/instrumentação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Eletrodos , Humanos , Limite de Detecção , Nanofios/química , Neoplasias/diagnóstico , Biblioteca de Peptídeos , Polímeros/química , Proteína Desglicase DJ-1/urina , Técnicas de Microbalança de Cristal de Quartzo , Reprodutibilidade dos Testes , Razão Sinal-Ruído
6.
Anal Chem ; 92(9): 6654-6666, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32252524

RESUMO

DJ-1, a 20.7 kDa protein, is overexpressed in people who have bladder cancer (BC). Its elevated concentration in urine allows it to serve as a marker for BC. However, no biosensor for the detection of DJ-1 has been demonstrated. Here, we describe a virus bioresistor (VBR) capable of detecting DJ-1 in urine at a concentration of 10 pM in 1 min. The VBR consists of a pair of millimeter-scale gold electrodes that measure the electrical impedance of an ultrathin (≈ 150-200 nm), two-layer polymeric channel. The top layer of this channel (90-105 nm in thickness) consists of an electrodeposited virus-PEDOT (PEDOT is poly(3,4-ethylenedioxythiophene)) composite containing embedded M13 virus particles that are engineered to recognize and bind to the target protein of interest, DJ-1. The bottom layer consists of spin-coated PEDOT-PSS (poly(styrenesulfonate)). Together, these two layers constitute a current divider. We demonstrate here that reducing the thickness of the bottom PEDOT-PSS layer increases its resistance and concentrates the resistance drop of the channel in the top virus-PEDOT layer, thereby increasing the sensitivity of the VBR and enabling the detection of DJ-1. Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise (S/N > 100) and excellent sensor-to-sensor reproducibility characterized by coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a concentration of 30 pM, near the 10 pM limit of detection (LOD), encompassing four orders of magnitude in concentration.


Assuntos
Bacteriófago M13/química , Biomarcadores Tumorais/urina , Técnicas Biossensoriais , Proteína Desglicase DJ-1/urina , Neoplasias da Bexiga Urinária/urina , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...