Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Injury ; 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906480

RESUMO

Tourniquets are critical for the control of traumatic extremity hemorrhage. In this study, we sought to determine, in a rodent blast-related extremity amputation model, the impact of prolonged tourniquet application and delayed limb amputation on survival, systemic inflammation, and remote end organ injury. Adult male Sprague Dawley rats were subjected to blast overpressure (120±7 kPa) and orthopedic extremity injury consisting femur fracture, one-minute soft tissue crush injury (20 psi), ± 180 min of tourniquet-induced hindlimb ischemia followed by delayed (60 min of reperfusion) hindlimb amputation (dHLA). All animals in the non-tourniquet group survived whereas 7/21 (33%) of the animals in the tourniquet group died within the first 72 h with no deaths observed between 72 and 168 h post-injury. Tourniquet induced ischemia-reperfusion injury (tIRI) likewise resulted in a more robust systemic inflammation (cytokines and chemokines) and concomitant remote pulmonary, renal, and hepatic dysfunction (BUN, CR, ALT. AST, IRI/inflammation-mediated genes). These results indicate prolonged tourniquet application and dHLA increases risk of complications from tIRI, leading to greater risk of local and systemic complications including organ dysfunction or death. We thus need enhanced strategies to mitigate the systemic effects of tIRI, particularly in the military prolonged field care (PFC) setting. Furthermore, future work is needed to extend the window within which tourniquet deflation to assess limb viability remains feasible, as well as new, limb-specific or systemic point of care tests to better assess the risks of tourniquet deflation with limb preservation in order to optimize patient care and save both limb and life.

2.
Methods Protoc ; 6(2)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36961042

RESUMO

Trauma triggers critical molecular and cellular signaling cascades that drive biological outcomes and recovery. Variations in the gene expression of common endogenous reference housekeeping genes (HKGs) used in data normalization differ between tissue types and pathological states. Systematically, we investigated the gene stability of nine HKGs (Actb, B2m, Gapdh, Hprt1, Pgk1, Rplp0, Rplp2, Tbp, and Tfrc) from tissues prone to remote organ dysfunction (lung, liver, kidney, and muscle) following extremity trauma. Computational algorithms (geNorm, Normfinder, ΔCt, BestKeeper, RefFinder) were applied to estimate the expression stability of each HKG or combinations of them, within and between tissues, under both steady-state and systemic inflammatory conditions. Rplp2 was ranked as the most suitable in the healthy and injured lung, kidney, and skeletal muscle, whereas Rplp2 and either Hprt1 or Pgk1 were the most suitable in the healthy and injured liver, respectively. However, the geometric mean of the three most stable genes was deemed the most stable internal reference control. Actb and Tbp were the least stable in normal tissues, whereas Gapdh and Tbp were the least stable across all tissues post-trauma. Ct values correlated poorly with the translation from mRNA to protein. Our results provide a valuable resource for the accurate normalization of gene expression in trauma-related experiments.

3.
Stem Cell Res Ther ; 12(1): 604, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922628

RESUMO

BACKGROUND: Transdermal osseointegrated prosthesis have relatively high infection rates leading to implant revision or failure. A principle cause for this complication is the absence of a durable impervious biomechanical seal at the interface of the hard structure (implant) and adjacent soft tissues. This study explores the possibility of recapitulating an analogous cellular musculoskeletal-connective tissue interface, which is present at naturally occurring integumentary tissues where a hard structure exits the skin, such as the nail bed, hoof, and tooth. METHODS: Porcine mesenchymal stromal cells (pMSCs) were derived from nine different porcine integumentary and connective tissues: hoof-associated superficial flexor tendon, molar-associated periodontal ligament, Achilles tendon, adipose tissue and skin dermis from the hind limb and abdominal regions, bone marrow and muscle. For all nine pMSCs, the phenotype, multi-lineage differentiation potential and their adhesiveness to clinical grade titanium was characterized. Transcriptomic analysis of 11 common genes encoding cytoskeletal proteins VIM (Vimentin), cell-cell and cell-matrix adhesion genes (Vinculin, Integrin ß1, Integrin ß2, CD9, CD151), and for ECM genes (Collagen-1a1, Collagen-4a1, Fibronectin, Laminin-α5, Contactin-3) in early passaged cells was performed using qRT-PCR. RESULTS: All tissue-derived pMSCs were characterized as mesenchymal origin by adherence to plastic, expression of cell surface markers including CD29, CD44, CD90, and CD105, and lack of hematopoietic (CD11b) and endothelial (CD31) markers. All pMSCs differentiated into osteoblasts, adipocytes and chondrocytes, albeit at varying degrees, under specific culture conditions. Among the eleven adhesion genes evaluated, the cytoskeletal intermediate filament vimentin was found highly expressed in pMSC isolated from all tissues, followed by genes for the extracellular matrix proteins Fibronectin and Collagen-1a1. Expression of Vimentin was the highest in Achilles tendon, while Fibronectin and Col1agen-1a1 were highest in molar and hoof-associated superficial flexor tendon bone marrow, respectively. Achilles tendon ranked the highest in both multilineage differentiation and adhesion assessments to titanium metal. CONCLUSIONS: These findings support further preclinical research of these tissue specific-derived MSCs in vivo in a transdermal osseointegration implant model.


Assuntos
Células-Tronco Mesenquimais , Tecido Adiposo , Animais , Células da Medula Óssea , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Próteses e Implantes , Suínos , Aderências Teciduais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...