Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 23(5): 3720-3730, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37159651

RESUMO

Controlled continuous crystallization of the active pharmaceutical ingredient (API) telmisartan (TEL) has been conducted from TEL/DMSO solutions by antisolvent crystallization in deionized water using membrane micromixing contactors. The purpose of this work was to test stainless-steel membranes with ordered 10 µm pores spaced at 200 µm in a stirred-cell (batch, LDC-1) and crossflow (continuous, AXF-1) system for TEL formation. By controlling the feed flow rate of the API and solvent, through the membrane pores as well as the antisolvent flow, it was possible to tightly control the micromixing and with that to control the crystal nucleation and growth. Batch crystallization without the membrane resulted in an inhomogeneous crystallization process, giving a mixture of crystalline and amorphous TEL materials. The rate of crystallization was controlled with a higher DMSO content (4:1 DMSO/DI water), resulting in slower crystallization of the TEL material. Both membrane setups, stirred batch and the crossflow, yielded the amorphous TEL particles when deionized water was used, while a crystalline material was produced when a mixture of DI water and DMSO was used.

2.
Food Funct ; 13(21): 10870-10881, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36239179

RESUMO

Encapsulation of food and feed ingredients is commonly applied to avoid the loss of functionality of bioactive food ingredients. Components that are encapsulated are usually sensitive to light, pH, oxygen or highly volatile. Also, encapsulation is also applied for ingredients that might influence taste. Many polymers from natural sources have been tested for encapsulation of foods. In the past few years, pectins have been proposed as emerging broadly applicable encapsulation materials. The reasons are that pectins are versatile and inexpensive, can be tailored to meet specific demands and provide health benefits. Emerging new insight into the chemical structure and related health benefits of pectins opens new avenues to use pectins in food and feed. To provide insight into their application potential, we review the current knowledge on the structural features of different pectins, their production and tailoring process for use in microencapsulation and gelation, and the impact of the pectin structure on health benefits and release properties in the gut, as well as processing technologies for pectin-based encapsulation systems with tailor-made functionalities. This is reviewed in view of application of pectins for microencapsulation of different sensitive food components. Although some critical factors such as tuning of controlled release of cargo in the intestine and the impact of the pectin production process on the molecular structure of pectin still need more study, current insight is that pectins provide many advantages for encapsulation of bioactive food and feed ingredients and are cost-effective.


Assuntos
Alimentos , Pectinas , Pectinas/química , Preparações de Ação Retardada , Estrutura Molecular
3.
Food Res Int ; 137: 109359, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233062

RESUMO

Resveratrol is a stilbene phenolic associated with health-promoting properties such as antioxidant, anti-inflammatory and chemoprevention. Due to its chemical instability and low water solubility, microencapsulation represents a good alternative to provide better results when employing resveratrol as a nutraceutical ingredient. The main purpose of our work was to use low shear membrane emulsification to produce resveratrol-loaded emulsions of low polydispersity and integrate this process to spray drying to produce a powdered product. Resveratrol was dispersed with palm oil in a continuous phase obtained via Maillard reaction. We evaluated the influence of process conditions and phases composition on emulsions properties and performed the characterization of the spray-dried powder. Emulsions droplet size and span decreased as shear stress was increased. Higher dispersed phase fluxes provided increased droplet size polydispersity. Process conditions were set on 60.0 Pa shear stress and 70 L m-2h-1 of dispersed phase flux, obtaining emulsions with mean diameter around 30 µm and span of 0.76. Despite this relatively high droplet size of the infeed emulsions, the spray drying process resulted in particles with high encapsulation efficiency (97.97 ± 0.01%), and water content (~3.6%) and diameter (~10.2 µm) similar to particles obtained from fine emulsions in previously reported works.


Assuntos
Dessecação , Emulsões , Tamanho da Partícula , Pós , Resveratrol
4.
J Agric Food Chem ; 67(33): 9325-9334, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31318196

RESUMO

In vitro dynamic aroma release over oil-in-water (o/w) and water-in-oil-in-water (w/o/w) emulsions stabilized with Tween 20 or octenyl succinic anhydride (OSA) starch as a hydrophilic emulsifier and polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier was investigated. The equal-molecular-weight hydrophilic aroma diacetyl (2,3-butanedione) or relatively more-hydrophobic 3-pentanone was added to the emulsions prepared by high speed mixing, or membrane emulsification followed by thickened with xanthan gum removing droplet size distribution and creaming as variables affecting dynamic release. Results showed the differences of w/o/w emulsions in the dynamic release compared to o/w emulsions mainly depended on aroma hydrophobicity, emulsion type, emulsifier-aroma interactions, and creaming. Xanthan led to a reduced headspace replenishment. Interfacially adsorbed OSA starch and xanthan-OSA starch interaction influenced on diacetyl release over emulsions. OSA starch alone interacted with 3-pentanone. This study demonstrates the potential impact of emulsifying and thickening systems on aroma release systems and highlights that specific interactions may compromise product quality.


Assuntos
Emulsificantes/química , Odorantes/análise , Amido/química , Emulsões/química , Glicerol/análogos & derivados , Glicerol/química , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos Bacterianos/química , Polissorbatos/química , Ácidos Ricinoleicos/química , Anidridos Succínicos/química , Água/química
5.
Langmuir ; 28(1): 134-43, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22059928

RESUMO

A method for the production of near-monodispersed spherical silica particles with controllable porosity based on the formation of uniform emulsion droplets using membrane emulsification is described. A hydrophobic metal membrane with a 15 µm pore size and 200 µm pore spacing was used to produce near-monodispersed droplets, with a mean size that could be controlled between 65 and 240 µm containing acidified sodium silicate solution (with 4 and 6 wt % SiO(2)) in kerosene. After drying and shrinking, the final silica particles had a mean size in the range between 30 and 70 µm. The coefficient of variation for both the droplets and the particles did not exceed 35%. The most uniform particles had a mean diameter of 40 µm and coefficient of variation of 17%. By altering the pH of the sodium silicate solution and aging the gel particles in water or acetone, the internal structure of the silica particles was successfully modified, and both micro- and mesoporous near-monodispersed spherical particles were produced with an average internal pore size between 1 and 6 nm and an average surface area between 360 and 750 m(2) g(-1). A material balance and particle size analysis provided identical values for the internal voidage of the particles, when compared to the voidage as determined by BET analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA