Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 121: 111792, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579442

RESUMO

A unique composite nanodiamond-based porous material with a hierarchically-organized submicron-nano-structure was constructed for potential bone tissue engineering. This material consisted of submicron fibers prepared by electrospinning of silicon oxide (SiOx), which were oxygen-terminated (O-SiOx) and were hermetically coated with nanocrystalline diamond (NCD) films. The NCD films were then terminated with hydrogen (H-NCD) or oxygen (O-NCD). The materials were tested as substrates for the adhesion, growth and osteogenic differentiation of human osteoblast-like Saos-2 cells. The number and the spreading area of the initially adhered cells, their growth rate during 7 days after seeding and the activity of alkaline phosphatase (ALP) were significantly higher on the NCD-coated samples than on the uncoated O-SiOx samples. In addition, the concentration of type I collagen was significantly higher in the cells on the O-NCD-coated samples than on the bare O-SiOx samples. The observed differences could be attributed to the tunable wettability of NCD and to the more appropriate surface morphology of the NCD-coated samples in contrast to the less stable, rapidly eroding bare SiOx surface. The H-NCD coatings and the O-NCD coatings both promoted similar initial adhesion of Saos-2 cells, but the subsequent cell proliferation activity was higher on the O-NCD-coated samples. The concentration of beta-actin, vinculin, type I collagen and alkaline phosphatase (ALP), the ALP activity, and also the calcium deposition tended to be higher in the cells on the O-NCD-coated samples than on the H-NCD-coated samples, although these differences did not reach statistical significance. The improved cell performance on the O-NCD-coated samples could be attributed to higher wettability of these samples (water drop contact angle less than 10°), while the H-NCD-coated samples were hydrophobic (contact angle >70°). NCD-coated porous SiOx meshes can therefore be considered as appropriate scaffolds for bone tissue engineering, particularly those with an O-terminated NCD coating.


Assuntos
Diamante , Osteogênese , Adesão Celular , Diferenciação Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Osteoblastos
2.
Mater Sci Eng C Mater Biol Appl ; 76: 775-781, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482589

RESUMO

This paper investigates the interaction of human osteoblast-like Saos-2 cells with stainless steel covered by a film of densely inter-grown silicalite-1 crystals with defined outer and inner surfaces. The chemical composition of this film, labeled as SF(RT), was tuned by heat treatment at 300°C and 500°C (labeled as SF(300) and SF(500), respectively) and characterized by X-ray photoelectron spectroscopy (XPS), water drop contact angle (WCA) measurements and scanning electron microscopy (SEM). The number, the spreading area and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells in cultures on the silicalite-1 film were affected by the chemical composition of its outer surface and by its micro-porous structure. The number and the spreading area of the adhered osteoblast-like cells on day 1 was highest on the surface of SF(RT) relative to their adhesion and spreading on a glass cover slip due to the SF(RT) topology. However, SF(300) markedly supported cell growth during days 3 and 7 after seeding.


Assuntos
Osteoblastos , Adesão Celular , Linhagem Celular , Humanos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Dióxido de Silício , Aço Inoxidável , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...